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ABSTRACT 
Loop detectors are the oldest and widely used traffic data source. On urban arterials, they 
are mainly installed for signal control. Recently state-of-the-art Bluetooth MAC Scanners 
(BMS) has significantly captured the interest of stakeholders for exploiting it for area-wide 
traffic monitoring. Loop detectors provide flow- a fundamental traffic parameter; whereas 
BMS provides individual vehicle travel time between BMS stations. Hence, these two data 
sources complement each other, and if integrated should increase the accuracy and 
reliability of the traffic state estimation. 
 
This paper proposed a model that integrates loops and BMS data for seamless travel time 
and density estimation for urban signalised network. The proposed model is validated 
using both real and simulated data and the results indicate that the accuracy of the 
proposed model is over 90%.  
 
 
Keywords: Bluetooth, Loop, Data fusion, Travel time, Density, Signals 
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1 Introduction 
Road traffic is a dynamic system where its state changes over both space and time. For 
instance, at any given time the level of congestion at different locations on the network is 
different. Similarly, at any given location, the level of congestion at different time is 
different. The system also has a self degrading behaviour, i.e., once the congestion occurs 
the system moves from bad to worse at both local and global scale. For instance, the 
capacity of the congested section drops and the congestion spreads over the network 
blocking further traffic. Traffic operators dynamically control traffic with the aim to reduce 
congestion and limit its degrading impacts. The control algorithms need accurate spatial 
temporal estimation of traffic state parameters (characterised by speed or travel time, flow 
and density), network parameters and demand. This paper contributes to the accurate and 
reliable estimation of traffic state parameters over the signalised urban networks. 
 
The state of the traffic is estimated using data from various sensors that range from 
traditional inductive loops to advanced Bluetooth MAC scanners. Loops are the oldest and 
widely available data sources. Models have been proposed to estimate travel time (or 
speeds) [1-7] and density [8-11] from loop detector data. Most of these models are limited 
to motorway traffic only, where traffic is free to flow with no intersections (conflicting 
areas). On urban networks, the traffic state estimation is more challenging due to presence 
of external factors such as signals, side friction due to bus stops and parking, and mid-link 
sources and sinks (e.g. side streets). 
 
On signalised urban network, loops are primarily installed for signal control. The location 
of the loop on the network is defined by the controller. For instance, SCATS [12] requires 
loops at stop-line whereas, SCOOT [13] requires loops to be at the upstream of the 
signalised link. The nature of traffic on the urban network is stop-and-go running condition 
where vehicles queue at the stop-line during signal red phase whereas, upstream of the 
link can be free flow. Thus, the speed obtained from the loop cannot be generalised over 
the signalised link. Similarly, unlike the motorway traffic the occupancy of the loops cannot 
easily provide the density of the entire link. 
 
With the advancement in technology, advanced data sources such as Bluetooth MAC 
Scanners (BMS) [14, 15] and Wifi MAC Scanners [16-18] are also available. These scanners 
are extensively utilised for travel time estimation on both motorways [19] and arterials [20, 
21]. However, they cannot directly measure density and flow.  
 
The objective of this paper is to fuse loops and BMS for seamless, accurate and reliable 
traffic speed (travel time) and density estimation. The paper is structured as follows: First, 
in Section 2 the classical cumulative plot based traffic state estimation model and its issues 
are discussed. Section 3 provides detailed insight on BMS data. Section 4 presents the 
proposed traffic state estimation model with BMS and loop data. Thereafter, Section 5 and 
Section 6 discuss the testing and validation of the proposed model on the real and 
simulated network, respectively. Finally, the paper is concluded in Section 7. 
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2 Classical theoretical model for traffic state estimation 
Cumulative plots are time series of the cumulative number of vehicles over time at a 
specific location on the network. Say, we have loop detectors at upstream and downstream 
of the road section. The counts from the loop detector at upstream and downstream can 
provide cumulative plots U(t) and D(t), respectively. Under ideal conditions of no counting 
errors from detectors and vehicles are conserved between the detectors i.e., vehicles 
observed at upstream and downstream are same and there is no loss or gain of vehicles 
within the section: 

a) The vertical distance between the two plots (see Figure 1a) represents the number 
of vehicles between the two locations veh(t) (equation 1). The density of the road 
section is the number of vehicles divided by the length (L) of the section (distance 
between the points where U(t) and D(t) are defined) (equation 2) 

 ( ) ( ) ( )veh t U t D t   1 

 
( ) ( )

( )
U t D t

Density t
L


  2 

b) The area between the plots as defined by the vertical cuts in Figure 1c represents 
the total density during time period of [t-λ/2, t+λ/2,]. Average density during this 
time period is the area divided by length of time period (λ) and section length (L) 
(see equation 3 where dt is the differentiation).  

 

/2 /2 /2

/2 /2 /2
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 3 

 
c) The horizontal distance between the plots (see Figure 1a) represents individual 

vehicle travel time (equation 4) under First–In-First-Out (FIFO) assumption.  

 
1 1( ) ( )itt D i U i    4 

d) The area between the plots (see Figure 1b), defined by horizontal cuts, represents 
the total travel time, and average travel time is the area divided by the number of 
vehicles. Equation 5 represents average travel time at time t for all vehicles that 
arrive upstream during time period of [t-λ/2, t+λ/2] where λ is the time period over 
which the average is estimated.  
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e) The average speed  (equation 6) is obtained from the average travel time 
(equation 5) and link length (L)  
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Figure 1: Systematic illustration of classical cumulative plots theory: a) individual vehicle travel time and 

density b) total travel time; c) total density [INSERT] 

 
As explained above, under ideal conditions, traffic state defined by time series of average 
speed (equation 6) (or travel time (equation 5)) and density (equation 2) can be easily 
estimated using cumulative plots. However, ideal conditions are difficult to achieve in 
practice. If cumulative plots are defined using loop detectors, then even under normal 
running conditions one can easily expect random or systematic errors in counting due to 
reasons such as, cross-talk, etc. [22]. Moreover, urban networks have mid-link sources or 
sinks (endogenous demand) such as parking, or side-street, which violates the 
conservation of vehicle assumption. Due to the detector counting error; non-conservation 
of vehicles between plots location; and any such combination over time, there is drifting or 
Relative Deviation (RD) among the plots. For instance, if there is a mid-link sink (vehicles 
have destination to mid-link) then we observe more vehicles at upstream and a proportion 
of these will be lost in the mid-link sink, resulting in lower counts at downstream. With 
time the difference between U(t) and D(t) will increase and the error in the traffic state 
estimation will exponentially grow. On the contrary, if there is a mid-link source (vehicles 
have source from mid-link), then number of vehicles observed at downstream will be 
higher than the one observed at upstream. This can result in U(t) < D(t) and hence negative 
values of travel time and density.  
 
Bhaskar et al., [23] has developed a model named CUmulative plots and PRobe Integration 
for Travel time Estimation (CUPRITE) where travel time from probe vehicle is utilised to 
resolve the RD issue. The objective for CUPRITE is to correct the RD issue and estimate 
average travel time with the following assumptions:  

a) The time stamps of probe vehicles are available at the points where the cumulative 
plots are defined.  

b) RD issue can be resolved by correcting only one of the plots. Under such 
assumption, one of the cumulative plots is considered as accurate and other is 
redefined using probe vehicle data. Here, if U(t) is redefined then: 

a. Mid-link sink vehicles which are observed only at U(t) are assumed to be 
removed in the redefine U(t), and 

a. Mid-link source vehicles which are observed only at D(t) are assumed to be 
inserted in the redefined U(t). 

On the contrary, if D(t) is redefined then: 
a. Mid-link sink vehicles which are observed only at U(t) (and not at D(t)) are 

assumed to be inserted in the redefine D(t), and 
b. Mid-link source vehicles which are observed only at D(t) (and not at U(t)) are 

assumed to be removed in the redefined D(t). 

Probe vehicles are generally vehicles equipped with GPS (e.g. taxi fleets). The data from 
GPS includes time stamp and position coordinates. The frequency of data varies from 
applications to application. To know the precise time when the probe is observed at the 
detector location (where cumulative plots are defined) additional work related to the 
map-matching and interpolation between the data points is needed. Taxi data is managed 
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and owned by the private operators and might not be easily available. In this paper, we 
explore the use of BMS data (generally managed and owned by traffic operators) as a proxy 
for the probe in CUPTIRE application, the details for which are discussed in the next section 
(Section 3).  
 
The aforementioned second assumption is not an issue when CUPRITE is applied for 
average travel time estimation. However, for density estimation it can result in error. For 
instance, if U(t) is redefined then a) for mid-link sink vehicles case, density should be 
underestimated (because vehicles are removed from U(t)), and b) for mid-link source case 
density should be overestimated (because vehicles are added to U(t)). 
 
The originality of this paper is exploiting the BMS data as proxy for probes in CUPRITE, and 
utilising CUPRITE for both travel time and density estimation with BMS and loop data. 

3 Bluetooth Media Access Control Scanner (BMS) Data 
Recently there has been a significant interest of traffic stakeholders and researchers to 
exploit Bluetooth technology for estimating experienced travel time on the road network. 
The concept behind this is rather simple. Here, a Bluetooth MAC Scanner (BMS) targets to 
inquire the Media Access Identification (MAC-ID) codes of the discoverable Bluetooth 
devices within its communication range, termed as zone. Most of the portable electronic 
devices (such as mobile phones, car navigation systems etc.) are equipped with Bluetooth. 
A device in discoverable mode can respond back to the inquiry of the BMS with an inquiry 
package that contains the unique ID of the device (MAC-ID). BMS scans these packages and 
stores the respective MAC-ID and the time-stamp linked to the inquiry process. Time-
synchronised BMSs on the road network has the potential to provide travel time from one 
BMS zone to another. For instance, travel time (ttm,i,j) (equation 7) for MAC-ID m, from ith 
BMS to jth BMS is the difference of the time when the device is observed at ith BMS(tm,i) and 
jth BMS (tm,j)  
 , , , ,m i j m j m itt t t   7 

A device travelling through the communication zone of the BMS can be detected multiple 
times, that depends on the time spent by the device in the zone. For instance, Figure 2 
illustrates a trajectory of a vehicle, equipped with Bluetooth, through the BMS zone. The 
device has arrived at and departed from the zone at time τa and τd, respectively and during 
its travel it has been observed seven times by the BMS. The time-stamp corresponding to 
the first and last observation by the BMS are τfr and τlr, respectively. In order to reduce the 
data storage, BMS can be configured to only store the MAC-ID, τfr and duration (dR). For 
instance, Table 1 provides sample data from a BMS. 
 
Here, duration dR is the time difference between τlr and τfr, which represents the reported 
travel time of the device through the communication zone. However, the actual duration of 
the device is dA represented as time difference between τd and τa, which may not be equal 
to dR due to the technical factors such as time needed for communication and BMS scanning 
cycle. Interested reader should refer to Bhaskar and Chung [14] for the detailed discussion 
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on the Bluetooth communication, BMS data acquisition and accuracy and reliability of the 
travel time estimation from BMS. 
 
Figure 2: Conceptual illustration of a device travelling through the BMS communication zone and detected 

multiple times by the BMS. [INSERT] 

 
Table 1: Sample data fields from a BMS [INSERT] 

 
The shape and size of the communication zone of the BMS depends on the type and the 
strength of the antenna used, respectively. As a general rule of thumb, to capture the 
Bluetooth devices the communication zone should be large enough so that the targeted 
Bluetooth vehicles spend at least 5 seconds within the zone. For instance, the BMS scanners 
on Brisbane network have communication zone that is circular (omni-directional) with 
radius of 100 m and 150 m on signalised arterials and motorways, respectively. Travel time 
is defined between two points on the road network; hence, the travel time reported from 
the BMS, especially on the urban arterials, should clearly specify the type of matching used. 
For instance: (refer to Figure 3) If the time tm,i and tm,j in equation 7 are the time when the 
device is first detected (τfr) in respective zone. Then the travel time is for the section that 
corresponds to the entrance of the u/s BMS zone to the entrance of the d/s BMS zone 
(En2En in Figure 3). Whereas, if exit time (τfr+dR) is used then the travel time is for the 
section that corresponds to the exit of the u/s BMS zone to the exit of the d/s BMS zone 
(Ex2Ex in Figure 3). If traffic is free-flow in each zones (u/s and d/s) then travel time for 
En2En section and Ex2Ex section is expected to be the same. For urban networks, if BMSs 
are at the intersections then En2En travel time consists of partial delays from both u/s and 
d/s intersections. Whereas, Ex2Ex travel time only contains delay at d/s intersection and 
no delay from u/s intersection. Depending on the application, one can be interested to 
estimate point-to-point (P2P) travel time where the points Pu and Pd can be any point 
within the u/s and d/s BMS zones, respectively. For instance, Pu and Pd can be stop-line 
location at u/s and d/s intersections, respectively. 
 
In this paper, we aim to utilise BMS travel time points as a proxy for the probe requirement 
for CUPRITE. Assuming loop detectors are at the stop-line. Therefore, we define Pu and Pd 
at the stop-line locations. In other words, we are interested to estimate travel time from the 
stop-line at the upstream intersection to the stop-line at the downstream intersection. 
 

Figure 3: Illustration of travel time models between two BMS locations [INSERT] 

3.1 Transforming zone to point 
BMS data lacks the position of the vehicle within the zone. Therefore, the time when the 
vehicle is at the point of interest within the zone is to be estimated from the available BMS 
data. For this, the traffic behaviour within the zone should be known. 
 
Here, we are interested to estimate the time when the vehicle is at the stop-line (equation 8
). 
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'

, , ,tm i m i m it   8 

Where : 
'

,tm i and ,tm i  is the time when the vehicle (with MAC-ID=m) is observed at the stop-

line of intersection i and the exit of the BMS zone at intersection i, respectively. 
Δm,i is the travel time of the vehicle (with MAC-ID=m) from the stop-line of 

intersection i to the exit of the respective BMS zone. 
 
Stop-line to stop-line travel time can be defined as (equation 9): 

 
' '

, / , / , / , / , / , /t t ( ) ( )m m d s m u s m u s m u s m d s m d stt t t       9 

Where: u/s and d/s represents upstream BMS zone and downstream BMS zone, 
respectively. 
 
The behaviour of the traffic at the upstream and at the downstream of the stop-line is 
different. Assuming: a) there is no spill-over from the downstream signal and b) BMS is 
located at the signal controller. Within the BMS zone, vehicles queue upstream of the stop-
line and accelerate or cruse downstream of the stop-line. The dynamics of the vehicle at the 
downstream of the stop-line depends on: 

a) The speed at which the vehicle will cruise (vc): This speed is defined by the speed-
limit of the road, driver’s acceptance to the speed limit, and cruising speed of the 
leading vehicle in the general car-following condition. 

b) The initial speed at the stop-line (u): This speed should not be greater than vc. (i.e., 
0 ≤ u ≤ vc). The value of which depends on the position of the vehicle within the 
queue. The first vehicle from the queue, which is waiting over the stop-line, will 
start to accelerate with initial speed of zero at the stopline whereas, other vehicle 
have non zero speed at the stop-line. 

c) Acceleration rate (a) of the vehicle: Different vehicles have different acceleration 
rate, that depends on the vehicle mechanical characteristics and drivers’ driving 
behaviour (harsh, smooth, eco-friendly). 

Say: a) r is the distance from the stop-line to the exit (at further downstream) of the zone 
(see Figure 4); and b) s (equation 10) is the distance travelled by the vehicle while 
accelerating in the downstream region of the zone. 

 
2 2

2.

cv u
s

a


  10 

Figure 4 illustrate examples of a vehicle trajectory through the BMS zone, where its 
deceleration, stopped and acceleration profile is marked as MN, NO, and OP, respectively. 
LM and PQ represent the cruising profile: 

a) In Figure 4a vehicle does not observe any delay in the BMS zone (i.e., s = 0) and its 
duration is among the lowest values. In Figure 4b, vehicle observes delay only in the 
upstream of the stop-line. The value of Δ in both these cases should be simply r/vc. 
Duration in Figure 4b is higher than that of Figure 4a.  
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b) In Figure 4c and Figure 4d vehicle observes delay at the upstream of the stop-line 
and has an accelerating delay at the downstream of the stop-line (s > 0). In this case, 
both Δ and duration are high.  

a. For Figure 4c vehicle reach its desired speed vc before exiting the zone (r>s).  
b. In Figure 4d vehicle is still accelerating at the time of exit from zone (s ≥ r). 

This case is possible only when if 
2

2.

cv
r

a
 . Assuming vc = 60 km/hr (16.7 

m/s) ; a = 2.5 m/s2, leads to 
2

2.

cv

a
 = 55.6 m. Generally, the BMS zone is greater 

than 100 m in radius (r > 100m), hence this case is not generally applicable. 
However, for the completeness of discussion we present it here.  

 
Figure 4: Examples of vehicle trajectory through the BMS zone: a) vehicle observing no delay through the 

BMS zone; b) vehicle observing delay at upstream region of the BMS zone, but no delay at downstream 

region of the BMS zone; c) and d) vehicle observing delay at both upstream and downstream regions of the 

BMS zone [INSERT] 

As can be seen from above, Δ (equaton 11) depends on the parameters: r, vc , u and a and 
hence it should be different for different vehicles. 

 

2

0

2. .

c

c

c

r
if s

v

v u r s
if r s

a v

u u a r
if r s

a





  

   


   



 11 

If r, vc , u and a are known then Δ can be easily estimated. However, BMS data only provides 
duration d for each vehicle. Duration depends on the delay of the vehicle within the BMS 
zone. The higher delay results in longer duration. Higher delay means more vehicles are in 
the queue. Position of the vehicle within the queue at the stopline defines its initial speed 
(u) at the stop-line which further defines Δ for a given r and a and vc. Hence, there should 
be a relationship between Δ and d. We hypothesise that such relationship can be 
empirically estimated using simulation.  
 
In our previous work [14], we have developed a multi-layered Traffic and Communication 
Simulation (TCS) model, where microscopic traffic simulation (AIMSUN) is integrated with 
Bluetooth Communication simulation. Microscopic traffic simulation simulates the 
behaviour of individual vehicle and provides details of the vehicle dynamics (position, 
instantaneous speed, etc.). TCS randomly assigns vehicles with an active Bluetooth 
considering the user defined penetration rate of the Bluetooth equipped vehicles within the 
traffic stream. The dynamics of the vehicles equipped with Bluetooth are input to the 
Bluetooth communication simulation. The communication simulation replicates the 
communication behaviour of an active Bluetooth device within the vehicle with that of BMS. 
TCS model stochastically considers the discovery time needed by BMS to read the MAC-IDs 
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of the vehicle. It simulates the data acquisition process of BMS and provides the data (MAC-
ID, time) from the vehicles within the communication zone of the BMS.  
  
As illustrated in Figure 2, the reported timestamps of the BMS are different from the actual 
time of entering at or exiting from the communication zone. The actual entering and exiting 
time,  and , are directly available from the simulation by installing detectors at  
metres upstream and downstream of the intersection (assuming BMS communication zone 
is  metres radius). The TCS emulates the reported BMS timestamps of the first and last 

detections,  and , by introducing the temporal errors,  and , to the actual 

arrival/departure time,   and . As proven by Bhaskar and Chung [14], the temporal 
errors,  and , follow a Generalised Gaussian Distribution (GGD) with the constraints: 
  
 a d 10 ;   C     12 

where  denotes the BMS inquiry cycle. Reported duration  is then defined as: 

    d adR lr fr d a            13 

Interested, readers should refer to Bhaskar and Chung [14] for the details of the TCS model.  
 
TCS is used to develop an empirical relationship between Δ and d (duration d is considered 
as reported duration dR) (equation 14). Here, traffic is simulated for a network with two 
signalised intersection. The BMS is considered at the signal controller placed at the corner 
of the intersections. The BMS scan zone is 100 m.  Following parameters are considered for 
the simulation: 

a) The speed limit of the road as 60 km/hr.  
b) The stochastic vehicle (drivers) speed limit acceptance factor (f) is assumed to be 

normally distributed with mean of 1.1 and standard deviation of 0.1. The speed at 
which the vehicle will cruise is f times the speed limit of the road. 

c) The vehicle acceleration is also assumed to be normally distributed with mean of 3 
m/s2 and standard deviation of 0.25 m/s2.  

The simulation is performed over degree of saturation of 0.5 to 1.2 so as to replicate the 
duration over the different ranges. The parameters (α and β) for the equation 14 are 
calibrated with the data obtained from the simulation. Here, Δ is obtained from the 
trajectory of the Bluetooth vehicle and d is obtained from the BMS data acquisition 
replication. The parameters calibrated parameters using the aforementioned simulation 
are: α = 8.2624 and β = 0.978. 
 

 
(1 )*d     14 

 
In this paper, we adopt the aforementioned relationship to estimate Δ from d. It is 
recommended that α and β should be calibration for the given site characteristics. 
 
Substituting the equation 14 in equation 9 we define the stop-line to stop-line travel time 
for a vehicle (with MAC-ID = m) as follows (equation 15). 
 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Page 11 of 25 
 

 (1 ) (1 )

, / , / , / , /* *m m u s m d s m u s m d stt t t d d        15 

3.2 An overview on the sample size of filtered BMS on signalised urban 
arterial 

There can be significant noise in the estimated travel time (equation 15) from the BMS due 
to various reasons such as: 

a) Unknown mode: The data from BMS corresponds to the device being transported by 
the traveller. The actual mode of transport is unknown. Pedestrian or cyclist can 
have higher travel time than that of motorised vehicles. 

b) Only Zone Information: Travel time is only based on the information available within 
the BMS zone, the actual trajectory of the vehicle is unknown. If the vehicle stops 
along the route, due to any reason such as parking or rest area, then it will have 
higher travel time. Similarly, if there are multiple route choices between the two 
BMS zones, then the route taken is unknown. 

The noise in the travel time estimates from BMS data can be filter out by applying standard 
statistical techniques such as Box and Whiskers [24], MAD [25] or adaptive [26]. More 
details in section 4.2. 
 
On urban arterials, the sample size of the travel time estimates from BMS (after filtering) 
can range from one to three travel time points per minute (on average) and there can be 
periods when there is no data available. For instance Bhaskar et al., [15] has reported the 
average number of travel time points per minute from the morning peak periods (7 am to 9 
am) varying from 1.2 to 3.6 points per minute during the working days. They have also 
highlighted the peak periods when no travel time point is available. Algorithms need to 
develop to fill this gap.  
 
Due to the presence of signals, the variability of individual vehicle travel time on signalised 
arterials is quite large. The observed coefficient of variation (CV) of vehicle to vehicle travel 
time during 5 minute time periods on signalised routes in Switzerland has been reported to 
vary from 26% to 55% [22]. The day-to-day travel time variability on Brisbane is reported 
to vary from 20% to 50% (see Figure 5). Figure 5a and Figure 5b provides CV’s for 
Coronation drive and Wynnum Road from 20 working Tuesdays. In the figure, the dotted 
points are the individual vehicle filtered travel time points (primary Y axis) and the solid 
black line is CV (secondary Y axis). It is observed that the CV during congestion shoulder 
(build-up and dissipation) periods is higher, which indicates that the uncertainty of travel 
time prediction during shoulder conditions is high.   
 
Statistically, the number of samples needed such that the probability (equation16) of 
absolute relative deviation of error being less than εmax is more than α (level of 
significance) is given by equation 17 

 maxP( )relativeerror     16 

 

2 2

/2

2

max

.Z CV
n 


  17 
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Where: 
n: sample size  
Zα/2: Standard normal variates for α level of significance 

 (Z0.05/2= 1.96; Z0.01/2=1.645); 
CV: Coefficient of variation of the population 

Rearranging equation 17 one can define the expected maximum εmax for given sample size, 
CV and α as follows: 

 /2
max

.Z CV

n

   18 

Bluetooth travel time data is the sample from the population of vehicles and, on average 
(on signalised arterial) we do not observe many Bluetooth travel time points. Figure 6 we 
define the time series for εmax with 10% level of significance by applying equation 18 on the 
sites for which CV had been determined (in Figure 5). I.E., for the observed number of 
Bluetooth travel time points (sample size) and CV we are 90% confident that the absolute 
relative error in the average travel time estimation from the sample will be less than εmax 

(illustrated in Figure 6). Figure 6a to Figure 6h illustrates plots for 8 days. The solid line 
represents the time series of the εmax  defined for α =0.01. The dotted line represents 10% 
error mark. If traffic operators are interested in absolute relative errors to be less than 
10% for 90% of times, then one can easily see the time periods’ when the errors  (solid 
line) exceed the 10% mark (dotted line). 
 
Figure 5: Travel time samples (green points, primary Y-axis) and CV (black line, secondary Y-axis) along a) 

Coronation drive, Brisbane and b) Wynnum Road, Brisbane obtained from 20 working Tuesdays. [INSERT] 

 
Figure 6 Time series of εmax (percentage of error) defined using sample size equation for the CV for different 

days along Coronation drive, Brisbane. [INSERT] 

Although Bluetooth provides far better sample size than that compared to what is reported 
for floating car or probe vehicles. However, there are times, even during peak periods, 
when the sample size is statistically not strong enough for desired confidence in the 
average travel time estimation. This encourages researchers to explore avenues to have 
seamless and reliable travel time estimation on urban networks. In this paper, we propose 
one such methodology. 

4 Traffic state estimation 
If loops provide pulse information, then individual vehicle detection time at the location of 
the detector can be obtained, though the vehicle can’t be identified. But loops generally 
provide aggregated counts during a detection interval (say 1 minute), where the individual 
vehicle detection time is unknown. Hence, exact matching of the BMS record with the 
detection of a vehicle by loop detector is not possible. The proposed model fuses loop data 
with Bluetooth by first defining cumulative plots using loops and thereafter, correcting the 
drifting of plots using Bluetooth. The architecture for the model is presented in Figure 7. 
The steps include: 
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a) Prepare cumulative plots at upstream and downstream intersections (see Section 
4.1)  

b) Prepare Bluetooth travel time from location of upstream detectors to downstream 
detectors (see Section 4.2) 

c) Reduce drifting between the plots, by integrating Bluetooth with cumulative plots 
(see Section 4.3) 

d) Estimate time series of traffic states (see Section 4.4). 

 
Figure 7: Architecture for the traffic state estimation model [INSERT] 

4.1 Prepare cumulative plots at upstream and downstream intersections 
Say U(t) and D(t) represent cumulative plots at the upstream and the downstream 
intersections, respectively. These plots are defined by the stop-line loops at the respective 
intersection:  

a) If the loop data is in raw format, i.e., it contains pulses (value 0 or 1) corresponding to 
the presence of a vehicles then the cumulative plot can be easily defined by cumulating 
the pulses. Here, depending on the quality of the data available, filtering can be applied 
on the pulses (interested reader should refer to Chapter 6 of Bhaskar [22] for details on 
the filtering the pulse data). 

b) Generally, loop data available for the application is aggregated over a time period 
termed as detection interval, that can vary from 1 minute to 5 minutes. If data is 
aggregated then loop data should be integrated with signal timings to capture the 
fluctuations in flow profile. Here, during signal red phase there should not be any flow 
(i.e., slope of the cumulative plot should be zero) whereas, during signal green phase 
the flow should reflect saturation flow rate and demand pattern. Refer to Bhaskar et al., 
[27] for detailed modelling of accurate cumulative plots from aggregated loop data. 

For the ease of understanding, conceptual representation of the cumulative plot estimation 
using loop data and signal timings is illustrated in Figure 8: Figure 8a illustrates time series 
of cumulative plot defined by cumulating the vehicle counts obtained from a loop at an 
interval of DI (detection interval) seconds. The plots here are granulated to the level of 
detection interval. The flow during a detection interval is assumed as uniform and is defined 
as the ratio of the counts (Nd) obtained during a detection interval and corresponding 
detection interval time. Figure 8b illustrated a portion of the cumulative plot during a 
detection interval (from Figure 8a). Figure 8c conceptually illustrates the transformation of 
Figure 8b to more accurate representation, where the flow during the signal red phase is 
modified to zero, and flow during the signal green phase is redistributed considering the 
signal green time. The cumulative plot defined by the integration of signal timings and 
aggregated loop data is more accurate as it captures the stop and running traffic behaviour 
at the signalised arterials. Interested readers should refer to the above-mentioned 
references for details. 

 
Figure 8: Conceptual representation of the estimation of cumulative plot from loops and signal timings: a) 

illustrates a time series of cumulative counts, with each interval of DI; b) Illustrates integration of signal 

timings with detector data to capture the fluctuations in the cumulative plots due to signals. [INSERT] 
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4.2 Prepare Bluetooth based individual vehicle stop-line to stop-line travel 
time points  

Here, data from the BMSs at upstream and downstream are matched using equation 15. 

This provides a list of [ '

, /tm u s , ttm] where '

, /tm u s  is the time when the m-th Bluetooth device is 

observed at the stop-line of upstream intersection ( ' (1 )

, / , / , /t *m u s m u s m u st d    ) and ttm is the 

corresponding stop-line to stop-line travel time (equation 15)  
 
Thereafter, filtering is applied on the matched travel time points to differentiate between 
the valid travel time points and noise. For this a moving window of Δt (= 6 min) is defined. 
For each time window, confidence bounds of travel time are defined in terms of Upper 
Bound Value (UBV) and Lower Bound Value (LBV). Valid travel time points are the one 
which lie within the UBV and LBV, and points outside this range are considered as noise. 
 
UBV and LBV can be defined using different statistical filters such as Box and Whiskers, 
Median Absolute Deviation (MAD filter) etc. For this, paper we consider MAD filter. MAD  is 
the median of the absolute deviations from the data median. For time t, and moving 
window of Δt the median (Mt) and MADt is defined as below (equation 19): 
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

 
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Where median is an operator that provided the median of the data values. 
 
The UBVt(equation 20 ) and LBVt (equation 21) at time t are defined as follows:  

 . tt tUBV M f    20 

 . tt tLBV M f    21 

Where: t  is the standard deviation from the MAD and for a normally distributed data, it is 

approximated as (equation 22): 

 1.4826*t tMAD   22 

f represents the scale factor for the confidence bounds. Lower f results in higher 
confidence but with lower sample size, and vice versa. The value of f has been suggested by 
some authors to be from 2 to 5 [28, 29]. We recommend f=2 for higher confidence in the 
travel time estimates from the BMS data.  

 
By applying the MAD filter, valid travel time points are obtained. Valid travel time points 
provides a database of the time when the bluetooth vehicle is observed at upstream 
intersection stop-line [tu] (equation 23) and time when it is observed at downstream 
intersection stop-line [td] (equation 24). 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Page 15 of 25 
 

 '

, /[ ] [ ]u m u st t m   23 

 '

, /[ ] [ ]d m u s mt t tt m    24 

Thereafter, list [td] and [td] are integrated with the U(t) and D(t) to estimate the time series 
of the average travel time and density and discussed in the following sections. 
 

4.3 Reduce drifting: Integrating cumulative plots with BMS data  
BMS provides the lists [tu] and [td] that should be integrated with U(t) and D(t). There are 
two possible ways to integrate: 

a) Fix BMS with D(t): Here the rank (equation 25) of the Bluetooth vehicle in the 
cumulative plots is defined using D(t). The error in integration along y-axis 
(cumulative counts) and x-axis (time) is represented as ey (equation 26) and ex 

(equation 27), respectively (see Figure 9a). 

 ( )drank D t  25 

 ( ) ( )y d ue D t U t   26 

 
1( ( ))x u de t U D t   27 

b) Fix BMS with U(t): Here the rank (equation 28) of the Bluetooth vehicle in the 
cumulative plots is defined using U(t). The error in the integration along y-axis 
(cumulative counts) and x-axis (time) is represented by ey (equation 29) and ex 

(equation 30), respectively (see Figure 9b). 

 ( )urank U t  28 

 ( ) ( )y u de U t D t   29 

 
1( ( ))x d ue t D U t   30 

 
Figure 9: Illustrative example of fixing a BMS data with cumulative plots: a) BMS fixed with D(t); b) BMS 

fixed with U(t). [INSERT] 

In the absence of drifting: a) both ex and ey for each vehicle should be zero for FIFO 
situations; and b) the summation of errors for all the vehicles should be zero (equation 31) 
for non-FIFO situations 

 
, ,0 & 0x m y m

m m

e e
 

    31 

Note: If ex is zero then ey will also be zero and vice versa. 
 
Due to drifting, equation 31 will not be satisfied. We can reduce drifting by assuming one of 
the cumulative plots as correct and re-defining the other plots so that equation 31 is 
satisfied.  
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Whether BMS should be fixed to U(t) or D(t) is identified considering the confidence we 
have in the accuracy of the respective cumulative plots. If loops are at the stop-line (SCATS) 
then we have more confidence in D(t) than U(t) whereas, if loops are at the upstream 
entrance (SCOOTS) of the link then we have more confidence in U(t) than that of D(t). For 
instance: 

a) In Figure 10a, loops are at the stop-line. Here D(t) is directly obtained by summing 
the cumulative plots from detector dd1, dd2, and dd3. Whereas, U(t) should be defined 
as : 

 2 2 5 5 6 6( ) u u u u u uU t CP CP CP      32 

Where CPu2, CPu5 and CPu6 are the cumulative plots defined at detectors du2, du5 and 
du6, respectively. And ηu2, ηu5 and ηu6  are scaling factors to the cumulative plots CPu2, 
CPu5 and CPu6, respectively. In other words, ηu2, ηu5 and ηu6  represent the proportion 
of the counts observed at upstream detectors du2, du5 and du6, respectively towards 
the study link. In the example presented, ηu2 is unity as detector du2 is not on a 
shared-use lane. The values of ηu2, ηu5 and ηu6 depend on the turning proportions 
and need to be estimated in real time. The best estimate of scaling factor during 
different time periods can be obtained using the historical data clustered during 
time of the day and day of the week (Refer to  Bhaskar et al. [30] for details). 
However, the process can be complicated and hence it is easier to assume that D(t) 
is accurate and we perform corrections on U(t). 
 

b) In Figure 10b, loops are at the upstream entrance of the link. Here U(t) is directly 
obtained by summing the cumulative plots from detector du1, du2, and du3. Whereas, 
D(t) is defined as sum of the cumulative plots from detectors dd1, dd2, and dd3. Here 
D(t) for the study link is not accurate due to additional counts from link L1 and L2 
and loss in counts from L3 and L5. An estimate for D(t) can be obtained by 
considering the signal parameters. However, the process can be complicated. In this 
case it is easier to assume that U(t) is accurate and we perform corrections on D(t). 

 
Figure 10: Examples of detector configurations a) at stop-line and b) at upstream entrance of the link 

[INSERT] 

Drifting is due to the errors in cumulating the number of vehicles (y-axis), hence the 
corrections applied on the cumulative plots should aim to set ey to zero. For this: 

a) Points2Pass (P2Pi) are defined: These are points through which the cumulative plot 
should pass.  

a. Refer to Section 4.3.1 if BMS is fixed to D(t) i.e., we assume D(t) as correct 
and re-define U(t) 

b. Refer to Section 4.3.2, if BMS is fixed to U(t) i.e., we assume U(t) as correct 
and re-define D(t) 

b) Cumulative plots are scaled vertically so that they pass through the P2Pi.: Say, CP(t) 
represents cumulative plots, which can be either D(t) or U(t) depending on how 
P2Pi are defined. The details for the scaling are defined in Section 4.3.3 
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Say we have m BMS travel time points that are used to correct drifting in cumulative plots. 
I.E., size of the list [tu] and the list [td] is m each. We append these lists with initial value of 0, 
that corresponds to the zero counts at time zero. The size of the lists is now m+1, each. 

4.3.1 Define Points2Pass: Assuming D(t) as correct 
When we fix BMS data to D(t) it provides two lists: [tu] and [D(td)]. The lists are sorted 
independently in ascending order of its value and P2Pi 33 are defined as coordinates in the 
cumulative plot diagram: 

 
 

 

0 0

Points 2Pass ( 2 ) ( , ) 0,1,2,...,

: 0; 0

0,1,2,...,

( ) 0,1,2,...,

i i i

i u

i d

P P x y i m

where x and y

x ithelement of the sorted list t i m

y ithelement of the sorted list D t i m

  

 

  

  

 33 

4.3.2 Define Points2Pass: Assuming U(t) as correct 
When we fix BMS data to U(t) then it provides two lists: [td] and [U(tu)]. The lists are sorted 
independently in ascending order of its value and P2Pi (equation 33) are defined as 
coordinates in the cumulative plot diagram: 

 
 

 

0 0

Points 2Pass ( 2 ) ( , ) 0,1,2,...,

: 0; 0

0,1,2,...,

( ) 0,1,2,...,

i i i

i d

i u

P P x y i m

where x and y

x ithelement of the sorted list t i m

y ithelement of the sorted list U t i m

  

 

  

  
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4.3.3 Vertical scaling on CP(t) (U(t) or D(t)) 
Here, CP(t) is corrected so that it passes through the defined Points2Pass. For each P2Pi 
(i>0) corrections are applied along y-axis on CP(t) such that it passes through Point2Pass. 
Refer to Figure 11 that illustrates the variables used here. We first define scale factor (s), 
which is the ratio of the errors along y-axis at P2Pi and the increase in cumulative counts 
from time xi-1 to time xi. If the increase in cumulative counts is zero, then scale is 
considered as 1. 
 
For all time before xi-1, there is no need for correction, as CP(t) has already been corrected 
until xi-1. For time between xi-1 and xi, scaling is applied whereas, for time beyond xi CP(t) 
correction has the same magnitude as that at xi. The pseudo code for this is provided in 
equation 35. 
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Figure 11: Illustration of variables used to model the vertical scaling [INSERT] 

4.4 Traffic state estimation 
Once the drifting between U(t) and D(t) are corrected by applying the above procedure- 
where for stop-line detector U(t) is redefined (see Figure 12) and for upstream detector 
D(t) is redefined (see Figure 13). Traffic state is estimated by considering the revised 
cumulative plots. Here, average travel times for different estimation period are estimated 
to define the time series of travel time using equation 5. The time series of travel time can 
be transformed to the time series of average speed considering the link length using 
equation 6. Similarly, time series of average density is estimated using equation 3. 
 
Figure 12: Flowchart for traffic state estimation from stop-line detectors [INSERT] 

 
Figure 13: Flowchart for traffic state estimation from detectors that are at upstream entrance of the links 

[INSERT] 

5 Model application on real data 
The proposed model is applied on the real data from Brisbane along Coronation drive 
(traffic inbound towards CBD) as illustrated in Figure 14. The real data includes: 

a) Signal timings from SCATS 
b) SCATS stop-line loop counts aggregated over a period of 5 minutes 
c) Bluetooth travel time from BMS stations  

Length of section is 2.5 km, with 3 lanes in one direction. BMS scanners are located at the 
signalised intersection the locations for which are highlighted as yellow markers in Figure 
14.  
 
Figure 14: Study site, Coronation Drive (inbound traffic), Brisbane. [INSERT] 

Figure 15 represents the travel time from Bluetooth on the study day. Bluetooth outliers 
are identified using MAD filter and are illustrated as grey points in the figure. Time series of 
5 minute average travel time from filtered Bluetooth data is considered as ground truth 
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(see Figure 16a for the morning peak period). To demonstrate the effectiveness of 
CUPRITE we remove 30 minutes BMS data as if BMS was not available and apply CUPRITE 
the fill the gap. For instance Figure 16b to Figure 16h illustrates the periods (marked 
rectangle) when BMS data is purposely removed and the gap is filled by applying CUPRITE 
during the highlighted period. Filled travel time profile by CUPRITE is represented as red 
rectangles with red line. As can be seen from the figure, CUPRITE can very well fill the 
missing gap.  
Figure 17 compares CUPRITE travel time with that of actual travel time (from Bluetooth) 
for different days with 30 minutes of missing Bluetooth data, R2 (Coefficient of 
determination) for which is 0.902. The accuracy of CUPRITE is evaluated using the 
following performance indicators:  

a) Am (Equation37): This is the average of the accuracies (A(d,p), equation 36) 
obtained from all the estimation periods. It indicates the average performance, and 
is mathematically equivalent to 100(%) minus MAPE (Mean Absolute Percentage 
Error).  

b) A5 (Equation 38): This is the 5th percentile of the individual accuracies obtained 
(A(d,p) Equation 36) which means that 95% of the times the accuracy is more than 
A5.  
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 5(%) 5 ( , )A th percentileof A d p  38 

Where TTAct(d,p) and TTEst(d,p) are the actual average travel time (from BMS) and 
estimated (from CUPRITE) travel time, respectively during pth estimation period (5 minute 
each) from dth day.  
For the current analysis we have 42 (=P) estimation periods (6 points per 30 minutes for 
seven 30 minutes intervals per day) for 5 (=D) days. The analysis results have 93.3% of Am 
and 80.8% of A5, which validates the capacity of CUPRITE for seamless travel time 
estimation. 
Performance of the CUPRITE is evaluated against the naïve travel time estimation, where 
the missing travel time records are filled with historical average, i.e., aforementioned for 
each 30 minutes of missing Bluetooth records, instead of using CUPRITE we use historical 
average to evaluate 5 minute average travel time records. Here the historical average is 
from 15 working days and the validation days are not included in estimating the average. 
Figure 18 illustrates graph for estimated historical travel time versus actual travel time 
during the validation periods. One can see that the historical average highly 
underestimates the travel time during the validation periods. The performance using 
historical average is 84% of Am and 65% of A5. This indicates that CUPRITE significantly 
outperforms historical average for both average and reliability of estimation, with around 
10% improvement in mean accuracy and 15% improvement in reliability. 
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Figure 15: Travel time profiles along BMS site [INSERT] 

 
Figure 16: a) Bluetooth travel time points and average for 5 minutes; b to h: Results from the application of 

CUPRITE on 22
nd

 October 2012 with 30 minutes of missing Bluetooth data. [INSERT] 

 
Figure 17: CUPRITE travel time verus actual travel time (from BMS) for different validation days [INSERT] 

 
Figure 18: Historical average travel time verus actual travel time (from BMS) for different validation days 

[INSERT] 

Figure 19 illustrates the results for the application of CUPRITE for density estimation for 
the entire day. As expected, the time series of density follows similar patters as that of the 
time series of travel time, with peaks during the morning and evening. Density cannot be 
measured directly, and hence no ground truth for density is know. Due to which the 
estimated density from CURPRITE cannot be validated with real data. To overcome this 
problem we move to synthetic data as explained in the next section. 

 
Figure 19: Density estimation using CUPRITE using real data from Coronation drive, Brisbane. [INSERT] 

6 Validating the density estimation from CUPRITE using simulation 
The accuracy of CUPRITE for density estimation is evaluated in a simulation environment 
under Traffic and Communication Simulation (TCS) framework[14]. TCS integrates the 
BMS communication process with a microscopic traffic simulation to reproduce the 
temporal errors associated with the Bluetooth measurement (refer to Section 3.1).  

 
Figure 20: Illustration of the study site and the benchmark density estimation [INSERT] 

6.1 Simulation setting 
The TCS is embedded in AIMSUN microscopic simulator, and the performance of the 
CUPRITE for density estimation is evaluated under the scenarios where cumulative plots 
have significant drifting. We consider both mid-link source and sink (side street along the 
route as shown in Figure 20). The test network consists of a two-lane section between two 
consecutive signalised intersections with 120 seconds cycle time and 0.25 green split. The 
section has one mid-link sink (or source) point at 840 metres from the downstream 
intersection (Figure 20). The vehicles for the mid-link sink (or source) are randomly 
selected from the vehicles traversing the section.  
 
Demand is generated for 2 hours, which increases during the first hour, then becomes 
constant for the next hour. In order to test under different congestion levels, various 
scenarios are simulated with the degree of saturation at the downstream intersection 
during the peak period ranging from 0.9 to 1.2; each scenario is replicated 10 times with 
different random seeds. With regard to the significance of drifting, 10% mid-link sink and 
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source cases are tested. The percentage of sink vehicles is defined as the ratio of vehicles 
lost into the sink to the vehicles observed at upstream. The percentage of source vehicles is 
defined as the ratio of vehicles gained from the source to the vehicles departing from 
downstream.  
 
Bluetooth equipped vehicles are randomly selected from the individual simulated vehicles. 
Regarding the penetration rate, 5 cases are assumed; 1%, 5%, 10%, 15% and 20%, being 
consistent with the observed penetration of Bluetooth data from Brisbane arterial network 
[31]. Simulation is performed with 20 replications where each replication has a different 
random seed, resulting in different selection of the Bluetooth vehicle data. 

6.2 Benchmark density 
In order to keep the consistency, the benchmark density is also measured with cumulative 
plots. For this, additional detectors are installed at the mid-link (M1 and M2 in Figure 20), 
that is, the immediate upstream and downstream of the mid-link source and/or sink, which 
provides cumulative curves, M1(t) and M2(t), respectively. The set of plots directly 
measure the number of vehicles between upstream and mid-link (from U to M1) and 
between mid-link and downstream (from M2 to D), which is, in turn, converted to the 
benchmark density. The benchmark value is calculated as: 
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where  (270 m +840 m for Figure 20) denotes the section length. 
 

6.3 Results 
Figure 21 and Figure 22 summarise the CUPRITE density estimation results from the 
aforementioned simulation settings. Given the section is equipped with stop-line detectors, 
the results are based on the case where the downstream curve is assumed correct and the 
upstream curve is redefined accordingly. Density is estimated over the time period of three 
signal cycles (i.e., λ= 6 minutes in equation 40). Figure 21 and Figure 22 are from mid-link 
sink and mid-link source, respectively. The left graphs compare the benchmark density (X-
axis) and the estimated density from CUPRITE (Y-axis), only for 1% penetration case. The 
graph and the R2 value confirm the reasonable performance of CUPRITE for density 
estimation.  
 
The right graphs compare the accuracy indicators, Am and A5, as presented in equation 37 
and equation 38, respectively. Overall, the better accuracy is obtained as the penetration 
rate increases. When 20% of vehicles are equipped with the Bluetooth communication, the 
results show 96.96% of Am and 90.53% of A5 for 10% sink case, and 95.76% of Am and 
87.53% of A5 for 10% source case, which validates the effectiveness of CUPRITE for the 
density estimation of signalised arterial sections. 
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Figure 21: CUPRITE density estimation vs Benchmark for mid-link sink cases with Bluetooth measurement 

errors [INSERT] 

 

Figure 22: CUPRITE density estimation vs Benchmark for mid-link source cases with Bluetooth 

measurement errors [INSERT] 

7 Conclusions  
Road network is equipped with variety of traffic data retrieval systems ranging from 
traditional loops to advanced BMS. In this paper, loops and BMS are integrated for 
seamless traffic state estimation. Following are the conclusions from the analysis 
performed in the paper: 

a) BMS provides a good estimate of experienced individual vehicle travel time 
along the road network. The sample size for which depends on various factors 
and there are periods when the observed sample size is statistically low to have 
sufficient confidence in the average travel time estimation. There are also 
periods when the data is not available due to malfunctioning of the BMS. Hence, 
for seamless and reliable travel time estimation BMS should be complemented 
with other data sources. 

b) Loops provide counts that are cumulated to define cumulative plots at the 
location of the loop location. The classical theoretical model of using cumulative 
plots can provide accurate travel time and density. However, this theoretical 
model can’t be applied in real world due to violation of conditions for accurate 
counting and conversation of traffic flow. The violation results in drifting of the 
plots. The proposed model reduces drifting by fusing cumulative plots with BMS 
data. For this BMS data is transformed from zone data to point data and 
empirical model for the transformation is proposed. 

c) The strength of the proposed model is that it not only provides seamless travel 
time but also the density. Density is very difficult to measure and estimate in real 
network. For the measurement of density, very sophisticated measurements 
such as helicopter data can be utilised, which is practically not achievable. A 
simple method like the one proposed here provides an accurate estimation of 
density, which is significant contribution to the state-of-the-art. 

d) For travel time estimation the model is validated using real data. The results 
indicate that the mean accuracy (Am) and reliability (A5) for travel time 
estimation is over 90% and 80%, respectively. 

e) For density estimation, the performance is evaluated using simulation. Here, 
Bluetooth penetration rate of 1% to 20% is considered. The results indicates Am 
varies from 93% to 96% and A5 varies from 80% to 90% with increasing 
penetration rate. 

f) The travel time estimated from the proposed model is compared with that of 
naïve travel time estimation (historical average). The proposed model has 10% 
improvement in mean accuracy and 15% improvement in reliability of the 
estimation than that of the naïve model. 
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Figure 1: Systematic illustration of classical cumulative plots theory: a) individual vehicle travel time and 

density b) total travel time; c) total density 
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Figure 2: Conceptual illustration of a device travelling through the BMS communication zone and detected 

multiple times by the BMS. 
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Figure 3: Illustration of travel time models between two BMS locations 
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Figure 4: Examples of vehicle trajectory through the BMS zone: a) vehicle observing no delay through the 

BMS zone; b) vehicle observing delay at upstream region of the BMS zone, but no delay at downstream 

region of the BMS zone; c) and d) vehicle observing delay at both upstream and downstream regions of the 

BMS zone 
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(a)  

(b)  
Figure 5: Travel time samples (green points, primary Y-axis) and CV (black line, secondary Y-axis) along a) 

Coronation drive, Brisbane and b) Wynnum Road, Brisbane obtained from 20 working Tuesdays. 
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a)   b)  

c)   d)  

e)   f)  

g)   h)  
Figure 6 Time series of εmax (percentage of error) defined using sample size equation for the CV for different 

days along Coronation drive, Brisbane. 
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Figure 7: Architecture for the traffic state estimation model 
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Figure 8: Conceptual representation of the estimation of cumulative plot from loops and signal timings: a) 

illustrates a time series of cumulative counts, with each interval of DI; b) Illustrates integration of signal 

timings with detector data to capture the fluctuations in the cumulative plots due to signals.  
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Figure 9: Illustrative example of fixing a BMS data with cumulative plots: a) BMS fixed with D(t); b) BMS 

fixed with U(t). 
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Figure 10: Examples of detector configurations a) at stop-line and b) at upstream entrance of the link 
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Figure 11: Illustration of variables used to model the vertical scaling 
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Figure 12: Flowchart for traffic state estimation from stop-line detectors 
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Figure 13: Flowchart for traffic state estimation from detectors that are at upstream entrance of the links 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 
Figure 14: Study site, Coronation Drive (inbound traffic), Brisbane  
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Figure 15: Travel time profiles along BMS site 
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Figure 16: a) Bluetooth travel time points and average for 5 minutes; b to h: Results from the application of 

CUPRITE on 22
nd

 October 2012 with 30 minutes of missing Bluetooth data. 
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Figure 17: CUPRITE travel time verus actual travel time (from BMS) for different validation days 
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Figure 18: Historical average travel time verus actual travel time (from BMS) for different validation days 
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Figure 19: Density estimation using CUPRITE using real data from Coronation drive, Brisbane 
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Figure 20: Illustration of the study site and the benchmark density estimation 
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Figure 21: CUPRITE density estimation vs Benchmark for mid-link sink cases with Bluetooth measurement 

errors 
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Figure 22: CUPRITE density estimation vs Benchmark for mid-link source cases with Bluetooth 

measurement errors  
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Table 1: Sample data fields from a BMS 

Record 
number 

MAC-ID (hexadecimal 
or encrypted) 

Time first 
recorded (τfr) 
(hr:mm:ss) 

Duration (dR) 
(seconds) 

1 F8:5F:2A:7A:8B:EA 17:30:32 10 
2 F4:8E:09:40:B7:D1 17:30:12 20 
3 E0:CA:94:E7:7A:38 17:30:42 10 
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