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Abstract 11 

This paper investigates factors associated with traffic crash fatalities in 63 provinces of 12 

Vietnam during the period from 2012 to 2014. Random effect negative binomial (RENB) and 13 

random parameter negative binomial (RPNB) panel data models are adopted to consider spatial 14 

heterogeneity across provinces. In addition, a spatiotemporal model with conditional 15 

autoregressive priors (ST-CAR) is utilised to account for spatiotemporal autocorrelation in the 16 

data. The statistical comparison indicates the ST-CAR model outperforms the RENB and 17 

RPNB models. Estimation results provide several significant findings. For example, traffic 18 

crash fatalities tend to be higher in provinces with greater numbers of level crossings. Passenger 19 

distance travelled and road lengths are also positively associated with fatalities. However, 20 

hospital densities are negatively associated with fatalities. The safety impact of the national 21 

highway 1A, the main transport corridor of the country, is also highlighted.  22 

Keywords: crash, province-level, random parameter, negative binomial, spatiotemporal, 23 

conditional autoregressive  24 
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1. Introduction 25 

Similar to other developing countries, rapid economic growth in Vietnam has been 26 

accompanied by an enormous increase in motorisation and a high level of traffic crashes. 27 

Between 2006 and 2014, the number of motorcycles increased with an annual growth rate of 28 

16.1% whereas the number of cars increased with an annual growth rate of 22.6% (JICA, 2009; 29 

NTSC, 2015). By 2014, there were 43.3 million registered vehicles, of which 94.6% were 30 

motorcycles. Unsurprisingly, the number of traffic crashes increased significantly from 9,470 31 

in 1992 to 27,993 in 2002 while the number of fatalities increased from 3,077 in 1992 to 13,186 32 

in 2002 (NTSC, 2015). Fortunately, since 2007, there has been a small, but steady reduction in 33 

the number of fatalities, which would be attributable to stronger traffic safety programs and 34 

measures implemented by authorities (Passmore et al., 2010; Ngo et al., 2012; Nguyen et al., 35 

2013a; Nguyen et al., 2013b). In 2014, Vietnam had 25,322 reported traffic crashes and 8,996 36 

fatalities (NTSC, 2015). It is not surprised that motorcycles accounted for around 70% of traffic 37 

crashes (NTSC, 2015; Truong et al., 2016). The World Health Organisation (WHO) estimated 38 

that the traffic fatality rate in Vietnam was nearly 24.5 per 100,000 population, which is 44% 39 

higher than the average fatality rate in South East Asia (WHO, 2015). 40 

 Traffic crashes are one of the leading causes of deaths and disabilities in Vietnam 41 

(Nguyen et al., 2012; Tran et al., 2012). In addition, their economic impact is profound. It was 42 

estimated that the cost of traffic crashes is between 2.5% and 2.9% of the country’s gross 43 

domestic product (GDP) (ADB, 2005; JICA, 2009). Traffic crashes can also cause a significant 44 

economic burden at individual and family levels. For example, a study in Thaibinh province 45 

found that the average cost of a traffic injury during hospitalisation was greater than 6 months’ 46 

average salary (Nguyen et al., 2013a). 47 

 Forecasting safety impacts of alternative transport planning schemes is essential for 48 

proactive safety planning. During the last decade, there has been a growing body of research 49 
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on macro-level safety analyses. In macro-level safety studies, safety performance measures, 50 

e.g. crash counts, spatially aggregated at a certain spatial unit are modelled against area-wide 51 

variables. A wide range of spatial units have been investigated, e.g. block groups (Dumbaugh 52 

and Rae, 2009), grid structure (Kim et al., 2006), census tracts (Wier et al., 2009), wards 53 

(Noland and Quddus, 2004), cantons (Aguero-Valverde, 2013), counties (Traynor, 2008; 54 

Huang et al., 2010), provinces (Erdogan, 2009; Tolón-Becerra et al., 2012), cities (Moeinaddini 55 

et al., 2014; Coruh et al., 2015), multiple provinces (Torre et al., 2007), states (Noland, 2003), 56 

countries (Kumara and Chin, 2004), and traffic analysis zones (TAZs) (Ng et al., 2002; 57 

Hadayeghi et al., 2003; Lovegrove and Sayed, 2006; Pirdavani et al., 2012; Wang et al., 2013).  58 

Effects of spatial units on modelling results have been discussed in few studies (Abdel-Aty et 59 

al., 2013; Lee et al., 2014b; Xu et al., 2014).  60 

 A variety of area-wide variables have been considered in previous macro-level safety 61 

analyses: socioeconomic variables, e.g. population density (Hadayeghi et al., 2003; Noland and 62 

Quddus, 2004; Huang et al., 2010; Tolón-Becerra et al., 2012; Lee et al., 2014b), age groups 63 

(Noland, 2003; Noland and Oh, 2004; Noland and Quddus, 2004; Aguero-Valverde and 64 

Jovanis, 2006; Quddus, 2008; Huang et al., 2010; Aguero-Valverde, 2013; Lee et al., 2014a), 65 

income (Noland, 2003; Traynor, 2008; Pirdavani et al., 2012 ), GDPs (Kumara and Chin, 2004; 66 

Tolón-Becerra et al., 2012), and employment (Siddiqui et al., 2012); land use variables (Ng et 67 

al., 2002; Lovegrove and Sayed, 2006; Pulugurtha et al., 2013; Wang et al., 2013; Lee et al., 68 

2014b); healthcare variables (Ng et al., 2002; Coruh et al., 2015); road infrastructure variables, 69 

e.g. road density, intersection density, road length (Amoros et al., 2003; Hadayeghi et al., 2003; 70 

Noland, 2003; Lovegrove and Sayed, 2006; Pirdavani et al., 2012; Tolón-Becerra et al., 2012; 71 

Jiang et al., 2016), roads with different functions (Lovegrove and Sayed, 2006; Huang et al., 72 

2010), and road network structures (Wang et al., 2013; Moeinaddini et al., 2014); traffic pattern 73 

variables, e.g. vehicle kilometres travelled (VKT) (Dumbaugh and Rae, 2009; Abdel-Aty et al., 74 
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2013; Aguero-Valverde, 2013), highway usage (Traynor, 2008), traffic volume (Quddus, 2008; 75 

Wier et al., 2009), speed (Quddus, 2008), volume to capacity ratios (Hadayeghi et al., 2003), 76 

and trip generation and distribution (Abdel-Aty et al., 2011); and environmental variables, e.g. 77 

rainfall (Coruh et al., 2015) and snowfall (Aguero-Valverde and Jovanis, 2006). 78 

 Spatial effects, i.e. spatial dependence or correlation and spatial heterogeneity (Anselin, 79 

1988), have been considered in macro-level safety analyses. For example, Bayesian spatial 80 

approaches have been used to account for possible spatial correlation between areas (Aguero-81 

Valverde and Jovanis, 2006; Quddus, 2008; Siddiqui et al., 2012; Wang et al., 2013; Xu et al., 82 

2014; Dong et al., 2015; Lee et al., 2015; Song et al., 2015; Siddiqui and Watkins, 2016). To 83 

consider spatial heterogeneity, previous macro-level safety studies have adopted the 84 

geographically weighted regression (GWR) models (Hadayeghi et al., 2003; Erdogan, 2009; 85 

Hadayeghi et al., 2010; Li et al., 2013) and random parameter models (Coruh et al., 2015; Xu 86 

and Huang, 2015). Space-time interaction has also been considered by Aguero-Valverde and 87 

Jovanis (2006). 88 

 A number of studies have focused on macro-level safety analyses, which however is 89 

mainly Western-based. There is a need to understand the safety effects of area-wide 90 

characteristics in the context of developing countries, including South East Asia countries and 91 

Vietnam specifically. In addition, the issue of level crossings are not considered in existing 92 

macro-level safety studies. In Vietnam, most of railway crashes occurred at level crossings 93 

(JICA, 2009). Level crossing fatalities represent about 1.5% of all traffic fatalities in Vietnam 94 

(NTSC, 2015), which is higher when compared to Australia and the European Union with 0.5% 95 

and 1.3% respectively (ITSR, 2011; ERA, 2014). Note that Vietnam has one of the densest 96 

level crossing systems and the lowest percentages of protected level crossings in Asia (ESCAP, 97 

2000).  This paper investigates the relationships between various area-wide variables and 98 

traffic crash fatalities in Vietnam at the province level. Random effect and random parameter 99 
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negative binomial panel data models are utilised to account for spatial heterogeneity. In 100 

addition, a conditional autoregressive (CAR) model is utilised to account for spatiotemporal 101 

autocorrelation. The number of level crossings in each province is included in the analysis. A 102 

better understanding of safety effects of area-wide variables is critical to safety planning and 103 

policy in Vietnam. 104 

2. Data 105 

The number of traffic crash fatalities in 63 provinces from 2012 to 2014, was obtained from 106 

the National Transportation Safety Committee. Level crossing data were collected from the 107 

Vietnam Railway Administration (VNRA, 2015). Road network data, consisting of lengths of 108 

national highways, provincial roads, district roads, commune roads, and urban roads, were 109 

obtained from the Directorate for Roads of Vietnam. Expressways are not considered in this 110 

study due to the limited length of the current network, i.e. only 700km of the planned 6,000km 111 

expressway network have been in operation recently (VEA, 2015). A dummy variable is added 112 

to investigate the safety effect of the national highway 1A, which is the main transport corridor 113 

of the country with over 2,200km long travelling through 30 provinces (DRVN, 2015). Note 114 

that level crossing and road length data were only reported in 2015. This study reasonably 115 

assumes that changes in the number of level crossings and road lengths from 2012 to 2015 116 

were minor and could be ignored. 117 

 Socio-demographic panel data, e.g. population, population density, residential area ratio, 118 

and passenger distance travelled (PDT), in each province from 2012 to 2014 were downloaded 119 

from the website of the General Office of Statistics of Vietnam. In addition, medical-related 120 

panel data (e.g. the number of hospitals) were also downloaded, which is then used to calculate 121 

the hospital density in each province. 122 

 Fig. 1a shows the number of traffic crash fatalities by province in 2014. Hanoi and Ho 123 

Chi Minh City, two major cities, had the highest numbers of traffic crash fatalities. It is clear 124 
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that high values were clustered around Ho Chi Minh City. Moreover, results of the Moran’s I 125 

test (Moran, 1950; Truong and Somenahalli, 2011) indicated evidence of spatial 126 

autocorrelation with the Moran’s I statistic of 0.28 and p-value<0.001. Fatality rates by million 127 

passenger km travelled by province in 2014 are presented in Fig. 1b. It can be seen that high 128 

values were clustered in north-west provinces, which were in mountainous areas and had low 129 

PDTs. Spatial autocorrelation was also evident with the Moran’s I statistic of 0.16 and p-130 

value<0.01.  131 

  

Fig. 1 The number of traffic crash fatalities and fatality rate by million passenger km travelled by 132 
province in 2014 133 

  134 

 Descriptive statistics of variables are presented in Table 1. Two dummy variables, i.e. 135 

year 2013 and year 2014, were included to compare with the base year (2012). The number of 136 
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traffic crash fatalities was selected as the dependent variable while other variables were 137 

considered as independent variables.  Multicollinearity was checked by calculating the 138 

variance inflation factors (VIFs) for all independent variables. As a common rule of thumb, a 139 

VIF value of larger than 5 indicates high multicollinearity. As a result, population, population 140 

density, and residential area ratio were omitted. VIF values of ten variables included in the 141 

models are presented in Table 1.  142 

 143 

Table 1 Descriptive statistics of variables 144 
Variables Notations Mean Std. Min Max VIF 

Traffic crash fatalities  148.63 123.82 18.00 787.00  

Population (1000 persons)  1,424.86 1,236.05 303.00 7,981.90  

Population density (persons per km2)  476.06 578.67 43.80 3,809.00  

Residential area ratio (%)  3.37 3.07 0.40 12.20  

Passenger distance travelled (million passenger km) PDT 1,392.40 2,033.27 22.90 13,137.90 4.37 

Hospital density (number of hospitals per 1000km2) HDEN 5.07 4.92 0.99 24.81 1.90 

Length of national highways (km) LNH 337.11 225.40 0.00 1,146.00 2.18 

Length of provincial roads (km) LPR 423.17 200.55 0.00 999.00 1.51 

Length of district and commune roads (km) LDCR 3,688.34 2,431.18 110.74 14,375.20 1.77 

Length of urban roads (km) LUR 339.90 378.63 42.34 2,320.65 3.52 

On national highway 1A (dummy) NH1A 0.48  0.00 1.00 1.45 

Number of level crossings LX 23.75 32.19 0.00 181.00 1.81 

Year 2013 (dummy) Y13 0.33  0.00 1.00 1.34 

Year 2014 (dummy) Y14 0.33  0.00 1.00 1.34 

 145 

 Table 2 presents correlation coefficients for variables selected for modelling. There was 146 

a positive correlation between passenger distance travelled and length of urban roads 147 

(correlation coefficient = 0.797). However, the VIF results suggested no evidence of 148 

multicollinearity, in which, passenger distance travelled had the highest VIF value of 4.37, 149 

followed by length of urban roads with a VIF value of 3.52. Nevertheless, models with and 150 

without passenger distance travelled were compared in the following analysis. 151 

 152 
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Table 2 Pearson correlation matrix for variables selected for modelling 153 
 PDT HDEN LNH LPR LDCR LUR NH1A LX Y13 Y14 

PDT 1.00          

HDEN 0.49 1.00         

LNH -0.17 -0.50 1.00        

LPR -0.10 -0.36 0.53 1.00       

LDCR 0.28 -0.23 0.45 0.24 1.00      

LUR 0.797 0.29 0.11 0.12 0.35 1.00     

NH1A 0.24 0.09 0.03 0.01 0.03 0.12 1.00    

LX 0.39 0.11 0.19 -0.02 0.38 0.38 0.48 1.00   

Y13 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.00  

Y14 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 1.00 

 154 

3. Models 155 

3.1 Random effect and random parameter negative binomial models 156 

Since data contain province-specific characteristics and annual traffic crash fatalities in each 157 

province are likely to be correlated, panel count models should be employed. To account for 158 

spatial heterogeneity, random effect negative binomial (RENB) and random parameter 159 

negative binomial (RPNB) models have been applied in recent macro-level safety studies 160 

(Coruh et al., 2015; Xu and Huang, 2015). Therefore, RENB and RPNB models for panel data 161 

were used in this paper. 162 

 The negative binomial (NB) model has been widely used for crash frequency analysis, 163 

particularly for over-dispersed data (Lord and Mannering, 2010; Washington et al., 2011). Let 164 

𝑦𝑖𝑡 denote the observed number of traffic crash fatalities in province 𝑖 and year 𝑡, 𝑋𝑖𝑡𝑘 is the 165 

𝑘𝑡ℎ variable for province 𝑖 and year (time period) 𝑡, 𝛽𝑘 is the coefficient to be estimated, 𝑝 is 166 

the number of variables, 𝑛 is the number of provinces (zones), and 𝑇 is the number of years 167 

(time periods). The NB model is derived by assuming: 168 

𝑦𝑖𝑡 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑡)  (1) 

𝜆𝑖𝑡 = 𝑒𝑥𝑝 (𝛽0 + ∑ 𝛽𝑘𝑋𝑖𝑡𝑘
𝑝
𝑘=1 + 𝜀𝑖𝑡)  (2) 

where 𝜆𝑖𝑡 is the Poisson parameter, which is the expected number of fatalities in province 𝑖 and 169 
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year 𝑡,  𝑒𝑥𝑝(𝜀𝑖𝑡) is a gamma-distributed error term with mean one and variance 𝛼. With the 170 

addition of this term, the variance can be different to the mean as 𝑉𝐴𝑅(𝑦𝑖𝑡 ) = 𝜆𝑖𝑡 + 𝛼𝜆𝑖𝑡
2
. 171 

 To account for heterogeneity across individuals, e.g. provinces, the RPNB model can be 172 

written as: 173 

𝜆𝑖𝑡 = 𝑒𝑥𝑝 ((𝛽0 + 𝜔𝑖0) + ∑ (𝛽𝑘 + 𝜔𝑖𝑘)𝑋𝑖𝑡𝑘
𝑝
𝑘=1 + 𝜀𝑖𝑡)  (3) 

where 𝜔𝑖𝑘 is a randomly distributed term, e.g. a normally distributed term with mean zero and 174 

variance 𝜎𝑘
2 (Washington et al., 2011; Greene, 2012). In practice, a random parameter will be 175 

used if its standard deviation is significantly larger than zero; otherwise, the parameter is fixed 176 

across individuals. 177 

 It is noteworthy that a RENB model is equivalent to a RPNB model with the intercept 178 

term being the only random parameter (Anastasopoulos and Mannering, 2009; Washington et 179 

al., 2011; Chen and Tarko, 2014). In this paper, RENB and RPNB models are estimated using 180 

NLOGIT 5 (Econometric Software, 2012). 181 

 To compare models, the Likelihood Ratio (LR) test is used. The LR test statistic is 182 

calculated as: 183 

𝐿𝑅 = −2[𝐿𝐿0 − 𝐿𝐿1]  (4) 

where 𝐿𝐿0  and 𝐿𝐿1  are the log likelihood at convergence for null and alternative models 184 

respectively. This statistic is 𝜒2-distributed with degrees of freedom equal to the difference in 185 

the numbers of parameters between these models. 186 

3.2 Spatiotemporal model with conditional autoregressive priors (ST-CAR) 187 

In a previous study, Aguero-Valverde and Jovanis (2006) extended the model proposed by 188 

Bernardinelli et al. (1995), which specified a space-time interaction term, to include covariates. 189 

However, these models strictly assume linear temporal trends. In this paper, the model 190 

proposed by Rushworth et al. (2014) is utilised to account for spatiotemporal autocorrelation: 191 
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𝑦𝑖𝑡 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑡)  (5) 

𝜆𝑖𝑡 = 𝑒𝑥𝑝 (𝛽0 + ∑ 𝛽𝑘𝑋𝑖𝑡𝑘
𝑝
𝑘=1 + 𝜙𝑖𝑡)  (6) 

𝜙𝑖1|𝜙−𝑖1 ~ 𝑁 (
𝜌𝑆 ∑ 𝑤𝑖𝑗𝜙𝑗1

𝑛
𝑗=1

𝜌𝑆 ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 +1−𝜌𝑆

,
𝜏2

𝜌𝑆 ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 +1−𝜌𝑆

)  (7) 

𝜙𝑡|𝜙𝑡−1 ~ 𝑁(𝜌𝑇𝜙𝑡−1, 𝜏2𝑄(𝑊, 𝜌𝑆)−1) 𝑡 = 2, … , 𝑇  (8) 

where 𝜙𝑖𝑡 are random effects that account for residual spatiotemporal autocorrelation in the 192 

data after the effects of covariates have been removed, 𝜙−𝑖1 is the vector of random effects for 193 

time period 1 except for 𝜙𝑖1, 𝜙𝑡 is the vector of random effects for time period 𝑡, 𝑊 = {𝑤𝑖𝑗} 194 

is the 𝑛 × 𝑛 adjacent matrix (𝑤𝑖𝑗=1 if provinces 𝑖 and 𝑗 are adjacent or 0 otherwise), 𝜌𝑆 is the 195 

spatial parameter, 𝜌𝑇  is the temporal parameter, and 𝜏2  is the parameter controlling the 196 

variance of random effects. The precision matrix  𝑄(𝑊, 𝜌𝑆) corresponds to the conditional 197 

autoregressive (CAR) prior proposed by Leroux et al. (2000) and is given by 𝑄(𝑊, 𝜌𝑆) =198 

𝜌𝑆(𝑑𝑖𝑎𝑔(𝑊𝟏) − 𝑊) + (1 − 𝜌𝑆)𝐼, where 𝟏 is the 𝑛 × 1 vector of ones, 𝐼 is the 𝑛 × 𝑛 identity 199 

matrix.  200 

 Eq. (7) corresponds to the intrinsic CAR prior  (Besag et al., 1991) for strong spatial 201 

correlation if 𝜌𝑆=1. On the contrary, 𝜌𝑆=0 suggests independent random effects with constant 202 

mean and variance. In Eq. (8), spatial and temporal autocorrelation are induced by the variance 203 

and mean respectively. Strong temporal autocorrelation is suggested by 𝜌𝑇 =1 whereas 204 

temporal independence is indicated by 𝜌𝑇=0. 205 

 Model parameters were estimated in a Bayesian setting using Markov Chain Monte Carlo 206 

(MCMC) simulation. A burn-in period was set as 10,000 iterations. Model estimates are then 207 

based on 40,000 samples. Convergence of the model was examined by visual diagnostic and 208 

Geweke convergence diagnostic. Deviance Information Criteria (DIC) (Spiegelhalter et al., 209 

2002) was used to provide a measure of model fit. Data analyses were performed using the 210 

CARBayesST package in the R Statistical Environment (R Development Core Team, 2015). 211 
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3.3 Measures of model prediction performance 212 

 To compare model prediction performance, the Mean Absolute Error (MAE), Root Mean 213 

Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) are adopted.  214 

𝑀𝐴𝐸 =
1

𝑛𝑜
∑ |𝑂𝑗 − 𝑃𝑗|

𝑛𝑜
𝑗=1   (9) 

𝑅𝑀𝑆𝐸 = √
1

𝑛𝑜
∑ (𝑂𝑗 − 𝑃𝑗)

2𝑛𝑜

𝑗=1   (10) 

𝑀𝐴𝑃𝐸 =
1

𝑛𝑜
∑ |

𝑂𝑗−𝑃𝑗

𝑂𝑗
|

𝑛𝑜
𝑗=1   (11) 

Where 𝑂𝑗 is the observed value, 𝑃𝑗 is the predicted value from the model, and 𝑛𝑜 is the number 215 

of observations. 216 

4. Results 217 

4.1 RENB and RPNB models  218 

Given the correlation between PDT and length of urban roads, four models, including random 219 

effect with PDT (RENB-1), random effect without PDT (RENB-2), random parameter with 220 

PDT (RPNB-1), and random parameter without PDT (RPNB-2), were compared. Estimation 221 

results using 200 Halton draws are presented in Table 3. 222 

  In the RENB-1 and RENB-2 models, all variables were significant at p<0.01, except for 223 

the year 2013 variable. The standard deviation of the intercept distribution was significantly 224 

different to zero, indicating that modelling the intercept as random parameter was appropriate. 225 

Similarly, in the RPNB-1 and RPNB-2 models, all variables were significant at p<0.05, apart 226 

from the variable for year 2013. In addition, the intercept, length of urban roads, and the number 227 

of level crossings resulted in random parameters. Length of provincial roads resulted in a 228 

random parameter in the RPNB-1 model, but its standard deviation of parameter distribution 229 

was not significantly different to zero in the RPNB-2 model. The signs of parameters were 230 

consistent among the models. Dispersion parameters for these models were significantly 231 
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different to zero, suggesting the use of the negative binomial model over the Poisson model 232 

was appropriate. 233 

 Similar parameters and associated significance levels between the RENB-1 and RENB-234 

2 models confirmed that there is no multicollinearity when both PDT and length of urban roads 235 

were considered. Compared to the RENB-2 model, the RENB-1 model had better log 236 

likelihood; however, the LR test was not significant (LR = 2.32, df = 1, p-value = 0.127). 237 

Likewise, estimates were consistent between the RPNB-1 and RPNB-2 models, suggesting no 238 

multicollinearity when both PDT and length of urban roads were considered. Moreover, the 239 

RPNB-1 model was significantly better than the RPNB-2 model as shown by the LR test (LR 240 

= 4.67, df = 1, p-value = 0.031) and AIC. In addition, the RENB-1 model had slightly better 241 

AIC compared to the RPNB-1 model, which could be attributed to fewer parameters in the 242 

RENB-1 model. Although the RPNB-1 model had the best log likelihood, results of the LR test 243 

showed it was not significantly better than the RENB-1 model (LR = 5.15, df = 3, p-value = 244 

0.161) or the RENB-2 model (LR = 7.47, df = 4, p-value = 0.112). 245 

 Fig. 2 presents estimates of local parameters for variables associated with length of 246 

provincial roads and length of urban roads, obtained from the RPNB-1 model. It can be seen 247 

that the parameters for these variables varied across provinces. These variations may be 248 

attributed to different levels of traffic composition, traffic congestion, enforcement, and safety 249 

measures among provinces. Spatial variation patterns were however different between these 250 

two variables. Table 3 suggests coefficients of variations of local parameters for length of 251 

provincial roads and length of urban roads were 12% (0.00004/0.00034) and 50% 252 

(0.00037/0.00074) respectively.  Fig. 2b shows that the effect of length of urban roads seemed 253 

to be smaller in major cities, i.e. Hanoi and Ho Chi Minh City. This may be due to the fact that 254 

urban roads in major cities have better traffic safety systems, e.g. modern signal controls and 255 

car/motorcycle lane separation, and are strongly enforced.256 
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 257 
Table 3 Estimation results for RENB and RPNB models 258 
 RENB-1    RENB-2    RPNB-1    RPNB-2   

Variables Estimate  z value  Estimate  z value  Estimate  z value  Estimate  z value 

Intercept 4.29200 *** 132.73  4.24300 *** 130.70  4.31572 *** 128.03  4.36099 *** 132.45 

   Standard deviation of parameter distribution 0.46823 *** 47.11  0.46752 *** 47.41  0.45708 *** 44.03  0.48287 *** 45.69 

Passenger distance travelled (million passenger km) 0.00007 *** 8.62      0.00009 *** 10.32     

Hospital density (number of hospitals per 1000km2) -0.01320 *** -5.56  -0.00887 *** -3.91  -0.01535 *** -6.42  -0.01425 *** -6.18 

Length of national highways (km) -0.00055 *** -10.86  -0.00068 *** -14.00  -0.00073 *** -13.64  -0.00077 *** -15.12 

Length of provincial roads (km) 0.00055 *** 10.86  0.00042 *** 8.39  0.00034 *** 6.48  0.00046 *** 8.95 

   Standard deviation of parameter distribution         0.00004 ** 2.07  0.00002  1.26 

Length of district and commune roads (km) 0.00001 *** 2.81  0.00003 *** 7.95  0.00003 *** 6.30  0.00002 *** 3.76 

Length of urban roads (km) 0.00061 *** 15.19  0.00098 *** 40.16  0.00074 *** 17.61  0.00085 *** 33.40 

   Standard deviation of parameter distribution         0.00037 *** 18.43  0.00041 *** 20.30 

On national highway 1A (dummy) 0.14345 *** 6.87  0.17940 *** 8.88  0.09170 *** 4.36  0.11718 *** 5.64 

Number of level crossings 0.00561 *** 17.25  0.00439 *** 13.51  0.00706 *** 20.19  0.00634 *** 18.21 

   Standard deviation of parameter distribution         0.00042 ** 2.00  0.00103 *** 5.13 

Year 2013 (dummy) -0.01278  -0.54  -0.00392  -0.16  -0.01513  -0.67  -0.00275  -0.12 

Year 2014 (dummy) -0.10533 *** -6.04  -0.09603 *** -5.60  -0.10785 *** -6.42  -0.09525 *** -5.78 

Dispersion parameter for negative binomial distribution 217.868 *** 4.82  214.795 *** 4.84  241.085 *** 4.64  235.527 *** 4.71 

Number of observations 189    189    189    189   

Log likelihood -882.29811    -883.22039    -879.72426    -882.07340   

Akaike information criterion (AIC) 1790.6    1790.4    1791.4    1794.1   

Note: * p<0.1; ** p<0.05; *** p<0.01 259 

 260 
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Fig. 2 Parameters obtained from the RPNB-1 model for length of provincial roads and length of urban 261 
roads by province 262 

 263 

4.2 ST-CAR model 264 

Estimation results for the ST-CAR model are presented in Table 4. Note that the year 2013 and 265 

year 2014 variables were excluded since temporal autocorrelation was already considered in 266 

the ST-CAR model. It is clear that 95% Bayesian credible intervals (BCIs) of all parameters 267 

had the same sign (or did not contain zero). As the variance parameter 𝜏2 was 0.16 (95%BCI: 268 

0.12 – 0.21), spatial dependence parameter 𝜌𝑆 was 0.55 (95%BCI: 0.31 – 0.79), and temporal 269 

parameter 𝜌𝑇 was 0.95 (95%BCI: 0.86 – 0.998), the spatiotemporal autocorrelation in the data 270 

was evident. In general, the high temporal parameter is consistent with a decreasing trend of 271 

fatalities during the three-year study period suggested by the RENB and RPNB models. For 272 

example, in the RENB and RPNB models, both year 2013 and year 2014 variables resulted in 273 
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negative coefficients where the year 2014 variable was significant at p<0.01. The effect of 274 

including the temporal parameter was further examined by estimating a model with spatial 275 

autocorrelation only (𝜌𝑇 was set as 0). The DIC of the model with spatial autocorrelation only 276 

was considerably larger than that of the ST-CAR model with spatiotemporal autocorrelation 277 

(1650.892 versus 1586.463). This suggests the ST-CAR model was the better model and 278 

considering spatiotemporal autocorrelation improved model fit. In addition, the signs of 279 

parameters in the ST-CAR model were in accordance with those in the RENB and RPNB 280 

models. 281 

Table 4 Estimation results for the ST-CAR model 282 
Variables Mean s.d. Bayesian credible interval 

   2.5% 97.5% 

Intercept 4.22784 0.06447 4.10487 4.36023 

Passenger distance travelled (million passenger km) 0.00007 0.00001 0.00005 0.00010 

Hospital density (number of hospitals per 1000km2) -0.00308 0.00065 -0.00435 -0.00178 

Length of national highways (km) -0.00034 0.00012 -0.00059 -0.00013 

Length of provincial roads (km) 0.00024 0.00011 0.00002 0.00045 

Length of district and commune roads (km) 0.00004 0.00001 0.00002 0.00005 

Length of urban roads (km) 0.00042 0.00007 0.00030 0.00056 

On national highway 1A (dummy) 0.24537 0.02983 0.18438 0.29819 

Number of level crossings 0.00259 0.00071 0.00115 0.00397 

𝜏2  0.15937 0.02350 0.11801 0.21046 

𝜌𝑆  0.55164 0.12338 0.31036 0.78930 

𝜌𝑇  0.95150 0.03766 0.85880 0.99827 

DIC 1586.463    

 283 

4.3 Model comparison 284 

 A summary of model comparison statistics is shown in Table 5. NB is the fixed parameter 285 

negative binomial model. All RENB and RPNB models provided similar MAE, RMSE, and 286 

MAPE, which were significantly better than those in the NB model. This suggests the 287 

consideration of random effects or random parameters improved model fit considerably. It is 288 

clear that the ST-CAR model, which accounted for spatiotemporal autocorrelation, 289 
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outperformed other models as its MAE, RMSE, and MAPE were significantly lower. The 290 

performance of the ST-CAR model is further illustrated in Fig. 3 that compares predicted 291 

versus observed values by NB, RENB-1, RPNB-1, and ST-CAR models. In short, the ST-CAR 292 

model was the most favourable model. 293 

Table 5 Model comparison statistics 294 
Statistics NB RENB-1 RENB-2 RPNB-1 RPNB-2 ST-CAR 

MAE 51.96 9.57 9.55 9.56 9.54 3.23 

RMSE 78.78 13.56 13.68 13.56 13.69 4.53 

MAPE 46.63% 7.44% 7.45% 7.43% 7.42% 2.74% 

 295 

  

  

Fig. 3 Predicted versus observed traffic crash fatalities 296 
 297 

5. Discussion 298 

The discussion in this section is focused on estimates of the ST-CAR model. Passenger distance 299 

travelled had a positive parameter of 0.00007 (95%BCI: 0.00005 – 0.0001), suggesting greater 300 

passenger distance travelled values are associated with increasing traffic fatalities. The positive 301 
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effect of passenger distance travelled is expected, given that it is considered as a measure of 302 

exposure to safety risk. Previous studies also indicated the positive effect of VKT, another 303 

exposure measure, on traffic crashes (Dumbaugh and Rae, 2009; Abdel-Aty et al., 2013; 304 

Aguero-Valverde, 2013). 305 

 Hospital density resulted in a negative parameter of -0.00308 (95%BCI: -0.00435 to -306 

0.00178). This indicates provinces with higher hospital densities are more likely to have lower 307 

fatalities. The availability of hospitals related to hospital density is essential to post crash care 308 

since a faster access to medical care could prevent deaths. This result is in line with findings 309 

of previous research, which found that reduced crash fatalities are associated with higher 310 

hospital bed densities (Castillo-Manzano et al., 2013) and the availability of Magnetic 311 

Resonance Imaging (MRI) scans (Torre et al., 2007). An implication of this result is that 312 

enhancing local emergency medical services, e.g. ambulances and first-aid training, could also 313 

contribute to limiting the severity of traffic crashes. 314 

 Length of national highways was negatively associated with fatalities with a parameter 315 

of -0.00034 (95%BCI: -0.00059 to -0.00013). This should be carefully interpreted since 316 

important factors such as intersection density were not included in the model. Previous studies 317 

showed that higher intersections densities are associated with increasing crashes (Hadayeghi 318 

et al., 2003; Pirdavani et al., 2012). However, provinces in mountainous areas tend to have 319 

longer national highways, but lower intersection densities. The impact of length of national 320 

highways should be investigated in future work by enhancing the variety of area-wide factors. 321 

Nevertheless, fatalities in a province would increase if it contains the national highway 1A, 322 

indicated by a positive parameter of 0.24537 (95%BCI: 0.18438 – 0.29819). This is expected 323 

given that the national highway 1A is the backbone (north-south) transport corridor with heavy 324 

traffic travelling through 30 provinces. This finding supports authorities’ ongoing programs to 325 

upgrade and expand the national highway 1A.  326 
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 Length of provincial roads, length of district and commune roads, and length of urban 327 

roads resulted in positive parameters of 0.00024 (95%BCI: 0.00002 – 0.00045), 0.00004 328 

(95%BCI: 0.00002 – 0.00005), and 0.00042 (95%BCI: 0.0003 – 0.00056) respectively. These 329 

results suggest that increases in lengths of district and commune roads, provincial roads, and 330 

urban roads are associated with increases in fatalities, which is in accordance with findings of 331 

previous studies (Quddus, 2008; Tolón-Becerra et al., 2012). 332 

 Number of level crossings resulted in a positive parameter of 0.00259 (95%BCI: 0.00115 333 

– 0.00397), suggesting that provinces with a greater number of level crossings tend to have 334 

more traffic fatalities. This is an important result that should be considered by transport 335 

planners and authorities. Countermeasures might include removing level crossings at critical 336 

intersections, reducing the number of unprotected level crossings, and enhancing enforcement 337 

and safety education. 338 

 In the RENB and RPNB models, the year 2014 variable was significant at p<0.01 with a 339 

negative parameter. Although the variable for year 2013 was not significant, but it also resulted 340 

in a negative parameter. In general, a decreasing trend in fatalities during the period from 2012 341 

to 2014 was evident. 342 

6. Conclusion 343 

This paper has explored factors associated with traffic crash fatalities in 63 provinces of 344 

Vietnam during the period from 2012 to 2014. The RENB and RPNB panel data models were 345 

adopted to consider spatial heterogeneity across provinces, which can arise from observed and 346 

unobserved factors. In addition, the ST-CAR model was utilised to account for spatiotemporal 347 

autocorrelation in the data. The statistical comparison indicated that the signs of estimated 348 

parameters were consistent among these models and the ST-CAR model outperformed the 349 

RENB and RPNB models. 350 
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 Estimation results provide several significant findings. For example, traffic crash 351 

fatalities were positively associated with the number of level crossings, passenger distance 352 

travelled, length of provincial roads, length of district and commune roads, and length of urban 353 

roads. In addition, traffic crash fatalities were positively associated with the presence of the 354 

national highway 1A. However, hospital densities were negatively associated with traffic crash 355 

fatalities.  356 

 Although the models performed well in exploring effects of area-wide factors on traffic 357 

crash fatalities, there are several areas that can be improved. For example, other important 358 

factors, e.g. urbanisation rate, motorcycle to car ratio, intersection density, and education level, 359 

should be investigated. Expressways may also need to be considered in future as the length of 360 

the expressway network is growing. Future work should also investigate factors associated with 361 

fatal and injury crashes at different spatial levels, e.g. districts and suburbs. Nevertheless, this 362 

study gives an important contribution towards understanding safety effects of area-wide factors 363 

in the context of South East Asia countries and Vietnam specifically. 364 
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