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Abstract 

Timed transfer coordination in public transit reduces passenger transfer time by providing seamless 

interconnected transfers. The problem arises when a Receiving Vehicle (RV) arrives first to the transfer 

stop than a Feeding Vehicle (FV) that carries transferring passengers. Timed transfer coordination in 

operational control dynamically decides if RV is held at the transfer stop to allow transfers, or departs as 

scheduled. While transfer demand is essential for implementing timed transfer coordination, this variable 

is generally not available in public transit due to the lack of passenger transfer plan. The problem of 

acquiring this variable in real-time has also received scant attention in the literature.  

This paper proposes a new method to dynamically predict the transfer demand. We anticipate the 

transferring probability from each individual passenger by examining their historical travel itineraries. 

Three different types of models (simple analytical model; statistical model; and computation intelligence 

model) are developed to forecast the number of transferring passengers. Numerical experiments using 

observed Automatic Vehicle Location and Automatic Fare Collection data from South East Queensland, 

Australia show the accuracy and applicability of the proposed models in timed transfer coordination. 

Introduction 

A seamless interconnected transit system is essentially important to attract ridership. Transfer time is 

usually perceived as time lost for passengers [1]. Compared with private transport as almost a door-to-

door service, a poorly coordinated transfer is one of the decisive factors to discourage people from 

switching to public transport. Conversely, synchronised timetable and seamless coordination between 

transit trips are much desired by passengers and could significantly enhance the transit quality of service. 

The idea of timed transfer coordination in transit operation control is similar to the successful “hub-and-

spoke” system in air transportation. Where, if the incoming flight has been delayed for a certain amount 

of time, air controller may delay an out coming flight to allow passengers transfer in real-time. The 

successful of transfer coordination in air transportation highly depends on three principal variables [2]: (1) 

the delay of the incoming flight; (2) the number of transferring passengers; and (3) the frequency of the 

outgoing flight. While it is more obvious in air transportation to perform a timed transfer coordination 

strategy because the number of transferring passengers is known and flights generally are less frequent, 

similar approaches could also be applied to public transport at low frequency service if transfer demand is 

predictable. Timed transfer coordination in operational control holds a Receiving Vehicle (RV) in real-

time to wait for an incoming Feeding Vehicle (FV) to allow passenger transfers. However, transit 

operators will need to compare the costs induced by the transfer coordination decision to both transferring 

and non-transferring passengers to balance the trade-off between the cost of vehicle holding and missed 

connection under certain number of transferring passengers.  

Literature provides some insights into the timed transfer coordination problem in operational control of 

public transport [2-7]. Although being one of the most important variables in timed transfer coordination, 
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transfer demand is generally not available in real-time and has received scant attention in literature. Most 

of the existing timed transfer coordination studies assume a transfer demand [4-7] or briefly estimate it 

using a demand fraction [2, 3], without rigorous examinations of dynamic transfer demand prediction. It 

is not possible to estimate the cost induced by transfer coordination to transferring and non-transferring 

passengers if the transfer demand is unknown.  

This paper contributes toward timed transfer coordination in operational control by proposing a new 

method to predict the transfer demand in real-time. The transfer demand is predicted using the knowledge 

of individual travel pattern: how each passenger makes transfer in historical travel itineraries. Because of 

the need for continuous observation of travel behaviour, Smart Card based Automatic Fare Collection 

(AFC) data is exploited in this study. Numerical experiments using observed data show the effectiveness 

and applicability of the transfer demand prediction model in timed transfer coordination. The 

contributions of this paper are twofold: (1) to propose a new method to predict number of transferring 

passenger in real-time, and (2) to show that the quality of transfer demand prediction affects the 

effectiveness of timed transfer coordination.  

The remaining of this paper is organised as follows. After the literature review of existing advances in 

timed transfer coordination and travel pattern analysis, a methodology section describes the prediction 

models of transfer demand. Finally, a numerical experiment shows the sensitivity of transfer demand 

prediction in timed transfer coordination strategies.  

Literature review 

Timed transfer coordination in operational control 

Timed transfer coordination in operational control is a real-time problem involving two transit vehicles of 

different routes, where passengers from a FV transfer to a RV. The problem arises when RV arrives at the 

transfer stop before the arrival of FV. It is then broken down to a binary problem of whether the RV 

should wait for the coming FV, so that passengers can make transfers, or depart the transfer stop as 

scheduled.  

The primary idea of timed transfer coordination in operational control is to predict the arrival time of FV, 

the non-transfer demand in RV and transfer demand (from FV to RV) to decide if RV should be held for 

passenger interchange. The idea is similar to the “hub-and-spoke” system at some major connecting 

airports, where air controller may delay an outcoming flight to allow passengers transfer in case their 

incoming flight has been delayed for a certain amount of time. The proliferation of advanced data 

collection systems such as Automatic Vehicle Location (AVL) and AFC has led to the emerging interest 

in applying similar timed transfer coordination system in public transit. Dessouky et al. [2] showed that 

the presence of real-time AVL data enhanced the performance of timed transfer coordination, otherwise 

RV might have to delay up to the predetermined holding time without a successful transfer coordination. 

Dessouky et al. [3] followed the same approach as in Dessouky et al. [2], but also described the 

predictions of arrival time, number of transferring and boarding passengers. The authors again concluded 

that the strategy with most data available would perform best in reducing passenger waiting time. 

Chowdhury and Chien [5] developed a model for dynamic dispatching of vehicle for maximising transfer 

opportunities. A cost function consisted of the cost for holding vehicle, delay cost and passenger missed 

connection cost is minimised. The authors showed that dynamic vehicle dispatching noticeably enhanced 

the transfer efficiency and reduced total cost. Chung and Shalaby [4] balanced a combined cost function 

of transfer time, in-vehicle passenger waiting time and downstream passenger waiting time between 

transferring and non-transferring passengers. The author also emphasised that timed transfer coordination 
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was essential to maintain coordinated transfer due to unexpected delays of transit vehicles. Ting and 

Schonfeld [6] formulated a heuristic algorithm to optimise the holding time of RV to wait for an incoming 

FV at a multi-hub transit network. Yu et al. [7] proposed a Support Vector Machine model to predict 

FV’s arrival time and elastic time to minimise the total waiting time of passengers at the transfer and 

downstream stops. A numerical test showed that the proposed dynamic vehicle dispatching strategy could 

reduce passenger waiting time.  

Prediction of transfer demand 

The transfer demand is one of the most important factors in these existing on-line transfer coordination 

cost functions [2, 5]. The transfer demand reveals the time cost to transferring and non-transferring 

passengers. The transfer demand is generally assumed known or estimated in timed transfer coordination 

model using an assumption of the transferring fraction. Dessouky et al. [2] assumed an equal probability 

of transferring to all given bus lines at transfer stops. Dessouky et al. [3] and Yu et al. [7] proposed a 

simple analytical model to predict the number of transferring passengers by assuming a fraction of 

transferring passenger. Many other studies such as Chowdhury & Chien [5], Chung & Shalaby [4] and 

Ting & Schonfeld [6] assumed that the transfer demand is known or predictable without a clear 

description of a prediction method. However, the validity of these assumptions in practical operation of 

timed transfer coordination control has not been discussed in literature. To the best of the author’s 

knowledge, none of the existing study has developed a real-time prediction model of transfer demand. 

The fact that this variable is stochastic, discrete and diminutive confounds analyst predictions in real-time.  

Individual travel pattern can be used to effectively forecast the transfer demand in real-time because it 

shows the regular boarding and alighting locations of each passenger. A probability of transferring for 

each passenger could be estimated by examining travel pattern, which enables anticipating the transfer 

demand. Passenger travel pattern has been traditionally analysed using stated preference or travel diaries 

survey data [8, 9]. However, as passengers are making new trips and changing their travel pattern on a 

daily basis, a new continuous data source is required for transfer demand prediction used in timed transfer 

coordination.  

Recently Smart Card (SC) AFC system has been increasingly popular in public transport, providing a 

massive quantity of continuous and dynamic data on passenger temporal and spatial movements. It 

enables continuous analysis of individual travel patterns on a much larger population than the traditional 

travel survey method. Chu & Chapleau [10] described a disaggregated travel pattern analysis framework 

for multi-day AFC data. “Anchor points” or repeated travel locations are mined from each SC user and 

then assigned to known spatial coordinates. Ma et al. [11] and Kieu et al. [12] adopted the classical 

DBSCAN algorithm, originally proposed in Ester et al. [13], to mine spatial and temporal travel patterns 

from AFC data. While individual analysis of travel behaviour enables oriented service provision, the 

classical DBSCAN algorithm has high quadratic computation complexity. Kieu et al. [14] proposed a 

new algorithm based on the same fundamental with classical DBSCAN to solve this quadratic 

programming problem and rapidly update the individual travel pattern.  

In summary, there has been growing interest in the field of timed transfer coordination in operational 

control. However, little attention has been paid to actual prediction of the transfer demand in real-time, 

which is the main reason why public transit timed transfer coordination is not as successful and popular as 

its air transportation counterpart. The hypothesis of this paper is that individual passenger travel pattern 

can be used to predict transfer demand for timed transfer coordination. Kieu et al. [12] shows that the 

majority of transit trips are made by passengers with regular travel patterns, where those regular 

customers repeatedly make transit trips of the same origin-destination. The findings of Kieu et al. [12], 
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provide a certain level of confidence that the knowledge of individual travel pattern is helpful in 

predicting the number of transferring passengers in real time. Interested readers should refer to Kieu et al. 

[12] for details. 

Methodology 

This section describes the method to dynamically predict transfer demand for timed transfer coordination. 

We focus on the problem of one FV connects with one RV at a single transfer stop.  

In timed transfer coordination in operational control, transfer demand prediction forecasts the number of 

transferring passengers of a FV travelling to the transfer stop. The limited examinations of transfer 

demand prediction in literature assume that all passengers are homogenous and sharing a similar 

deterministic transfer probability, so transfer demand only depends on the number of passenger on-board 

[2, 3, 7]. However, our earlier study shows that different segment of passengers has different travel 

behaviours [12]. Passengers can have regular spatial or temporal travel patterns, or both of them. 

Therefore, passengers with a spatial travel pattern of transferring have higher probability of transferring 

than other passengers.   

We develop different analytical, statistical and computational intelligence models to compare and choose 

the best model in terms of prediction accuracy. While statistical models are descriptive, and represent the 

statistical properties of data and their dependence on covariates, computational intelligence models such 

as Artificial Neural Network (ANN) generally would encapsulate the complex relationship between the 

dependent and independent variables [15]. The following explanatory variables in Table 1 are used to 

predict the transfer demand. 

Table 1 Descriptions of variables used in transfer demand prediction 

Name Description 

Dependent variables 

fN
 

Number of transferring passengers  

Independent variables 

1. HP Number of passengers that are likely to transfer 

2. LP Number of passengers that are unlikely to transfer 

3. MeanTransfer Mean number of transfer at the studied service 

4. MeanLPTransfer Mean number of LP that transfer at the studied service 

5. AM 1 if the time period is AM peak (7-10:00), 0 otherwise 

6. MID 1 if the time period is midday off-peak (10-14:00), 0 otherwise 

  

This paper assumes that AFC data of both boarding (touch on) and alighting (touch off) is available in 

real-time. Figure 1 explains how the variables in Table 1 are obtained from observed data.  
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The prediction framework starts with a feeding vehicle FVi approaching the transfer stop, where real-time 

AFC data provides the list of Ni on-board passengers. Each passenger Pj in FVi (j=1..Ni) has a probability 

of transfer at the upcoming transfer stop, which is calculated using the historical travel itinerary of Pj 

( ) 100%
j

j

Ptransfer

j

P

transfers
P P

journeys
 



     (1) 

The probability of transfer for each passenger Pj is defined as the ratio between the total number of 

transfer journeys and the total number of journeys. These two variables are obtained from individual 

travel itinerary data, which in turn has been established from the historical AFC data. The process of 

reconstructing travel itinerary from AFC data has been described in various existing studies in literature 

[12, 14]. If ( )transfer

jP P  is larger than 50%, the passenger is considered as “likely to transfer” because the 

probability of transferring is larger than otherwise. The sum of “likely to transfer” passengers makes up 

the HPi variable, whereas LPi is the remaining passengers on-board of vehicle FVi  

LPi = Ni – HPi      (2) 

Two historical variables mean number of transfer MeanTransferi and mean number of LP that transfer 

MeanLPTransferi within the same 30 minutes time window are estimated from the historical itinerary 

data. Along with two binary variables AMi and MIDi, these explanatory variables are used in three 

different types of models: a) Simple analytical model; b) Statistical model; and c) Computational 

intelligence model to predict the number of transferring passenger in vehicle FVi. 

 

Figure 1 Transfer demand prediction framework 
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Simple analytical model 

Analytical model has a mathematical closed form solution, which is tractable and has high explanatory 

power. It is therefore the preferable modelling approach whenever it is possible. This sub-section 

develops a Simple Analytical (SA) model to predict the number of transferring passengers which is based 

on the idea that if all passengers who are likely to transfer would make the transfer, then we only need to 

add the average number other passengers to make up the transfer demand. This model provides a simple 

heuristic approach for transfer demand prediction.  

fN MeanLPTranP eH sf r      (3) 

Where 

fN =Number of transferring passengers, to be predicted 

HP = Number of passengers that is likely to transfer, i.e. has the individual probability of transfer higher 

than 50% 

MeanLPTransfer = mean number of passenger which is not likely to transfer but transferred during the 

study period 

The model has no intercept because when HP and MeanLPTransfer are both zero the number of 

transferring passenger should also be zero.  

Statistical model 

The number of transferring passengers is a common count data variable, which is a statistical data type in 

which the observations are non-negative integer values. Count data is common in many disciplines 

including transportation engineering. Quddus [16] adopted Integer-Valued Auto Regressive (INAR) 

Poisson time series model to estimate the traffic accidents counts in Great Britain. Frondel and Vance 

[17] surveyed adult members of German households to examine the determinants of public transport 

ridership. Zero-inflated models were developed to quantify the effects of fuel price, fare, personal and 

transit system attributes, as the ridership counts was modelled as count data. Fuel price was identified as 

having a positive impact on the ridership. This sub-section develop statistical count data model to predict 

the number of transferring passengers.  

Poisson or Negative Binomial distribution is often assumed for modelling the distribution of observed 

count data. A random variable Y is said to have a Poisson distribution with parameter  if it takes integer 

values y= 0,1,2,… with probability:  

           (4) 

 

 = both mean and variance of this distribution, or in other words, “equi-dispersed” (  >0) 

Here 
 
refers to the expected transferring passengers, and y refers to the observed (real) number of 

transferring passengers. Poisson Regression models log of as a function of independent variable Xj. 

         (5) 

 
 

1

ln
K

j j

j

X 




Pr{ }
!

ye
Y y

y



 
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In this form, the Poisson Regression is relatively similar to the OLS, with the log form of the dependent 

variable to avoid negative values. The formula can be rewritten as 

          (6) 

 

Where 
jX independent variables (predictors) and regression coefficients 

j  are to be estimated using 

Maximum Likelihood estimation.  

However, Poisson regression relies on a strong assumption that the variance of the dependent variable 

equals its mean. This assumption is often not met in observed data due to its skewness. If the transferring 

passenger variable is “over-dispersed” or in other words, its variance exceeds the mean, we could also use 

the Negative Binomial distribution to model the dependent variable. Negative Binomial distribution 

describes “over-dispersed” count data better but has one more parameter compared to the Poisson 

Distribution. Its probability function could be written as 

1/

( 1/ ) 1
Pr{ }

( 1) (1/ ) 1 1

y

y
Y y

y


 

  

    
     

       
    (7) 

Where y= 0,1,2,… in this case it is the number of transferring passengers 

µ = mean of this distribution (µ >0) 

  = dispersion or heterogeneity parameter, where 
2




  is the variance of this distribution 

If the dependent variable has excessive zeros, both the Poisson and Negative Binomial model will under-

predict zeros. In this case, a Zero-Inflated Poisson (ZIP) or Zero-Inflated Negative Binomial (ZINB) 

model will be needed. This type of model assumes two distinct groups of observed dependent variables: 

Type 0 contains only zero; and Type 1 contains only positive count values. Zero-inflated model is a mix 

of two processes-one that determines if the individual is eligible for a Type 1 response, and another that 

determines the count of that response for eligible individuals. The first process uses a logit model to 

quantify the probability of being eligible for a Type 0 response with probability , whereas the second 

process is a regular Poisson or Negative Binomial Regression model with probability1  .  
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  (8) 

We adopt the Vuong test to decide if ZIP and ZINB models are used instead of the classical Poisson and 

Negative Binomial Regression model or not. The Vuong test [18] is designed to test null hypothesis that 

1
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ZIP (or ZINB) is equally close to the observed data as the traditional Poisson (or Negative Binomial) 

model. The metric of comparison is the Kullback-Leibler divergence, a measure of the distance between 

two probability distribution. The null hypothesis of the Vuong test is 

0 1 2: ( || ) ( || )KL t KL tH D g g D g g      (9) 

Where 1( || )KL tD g g measures the Kullback-Leibler divergence between the true model that generate 

observed data tg and the model of interest g for nonnegative integers 

1

0

( )
( || ) ln ( )

( )

t
KL t t

y

g y
D g g g y

g y





 
  

 
      (10) 

Computational intelligence model 

In transportation engineering, the most commonly applied computational intelligence paradigm in 

prediction is backpropagation learning method using Artificial Neutral Network [19]. ANN models the 

complex nonlinear relationship between the dependent variable and its independent variables, without the 

need of specifying the exact formulation. ANN is chosen instead of other computational intelligence 

models, such as Support Vector Machines [20], because of its flexibility, simplicity in implementation 

and quickness in providing an estimation in real time.  

A three-layered, multilayer perceptron ANN model was constructed for predicting the number of 

transferring passengers. Among the three layers of the ANN model, the first layer is the input layer, where 

the observed data is presented to the neural network. This data is presented to a 7 neurons input layer, 

where each neuron holds an independent variable. The last layer is the output layer, producing the 

estimated response for the input. The output layer has only a single neuron, representing the estimated 

number of transferring passengers.  The intermediate layer is the hidden layer, where non-linear pattern 

associations between the input and output variables are established.  

A global and robust validation procedure is essential to avoid over-fitting, when the error on the training 

dataset is very small, but the model performs poorly to new unseen data. To avoid over-fitting, the 

training data is randomly divided to 70% of “developing dataset” and 30% of “cross-validating dataset”. 

Different ANN models with 1 to 20 neurons in 1 to 3 hidden layers are built from the developing dataset, 

and a single hidden layer with 9 neurons has been found to be satisfactory using the cross-validation 

dataset. Figure 2 illustrates the structure of the proposed ANN model. 

 

Figure 2 ANN model structure 
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The prediction error of backpropagation algorithm is calculated by the value of Mean Squares Error 

(MSE) 

2

1

1
( )

N

j j

j

MSE t m
N 

       (11) 

Where N = number of testing data 

t = target output value 

m = model output value 

Hyperbolic tangent sigmoid transfer function is used in the hidden layer and linear transfer function is 

used in the output layer. The backpropagation algorithm has the maximum iteration is set as 1000, 

learning rate as 0.1 and training goal as 0.001. 

Numerical examinations 

This section examines the prediction accuracy of the aforementioned Simple analytical, Statistical and 

Computational intelligence models in timed transfer coordination. Four months AFC data from July to 

October 2013 of two busy bus routes in South East Queensland (SEQ), Australia is used for the 

comparison. Each record of AFC data includes Smart Card ID, and Stop ID & Timestamp of both touch 

on (passenger boarding) and touch off (passenger alighting) transactions. Figure 3 illustrates the two 

routes, where the single transfer stop is the 11th stop of Route 555 and 1st stop of Route 572 (Springwood 

station).  

 

Figure 3 Case study 

Route 555 has 15-minute while Route 572 has 30-minute scheduled headway. For this analysis we only 

consider the services of Route 555 with direct connection with Route 572, i.e. where Route 572 vehicle is 

scheduled to depart 5 minutes after Route 555 arrival. Both routes therefore can be seen as having 30-

minute scheduled headway. Over the 4 months of AFC data there are in total 1031 cases where the 

receiving vehicle (RV) arrives earlier than the feeding vehicle (FV), so that transfer coordination is 



10 

 

meaningful. The first 3 months of data (Jul-Sep 2013), 763 samples, have been used for model 

development and the rest have been used for model comparison. Table 2 shows the descriptive statistic of 

the dataset.  

Table 2 Descriptive statistic of variables 

Name Sample size  Mean Std. Dev Min Max 

Dependent variables 

fN
 

1031 1.34 1.73 0 12 

Independent variables 

1. HP 1031 1.21 1.57 0 10 

2. LP 1031 7.49 8.93 0 43 

3. MeanTransfer 1031 1.41 1.58 0.77 1.69 

4. MeanLPTransfer 1031 0.19 1.21 0.02 0.43 

5. AM 1031 0.32 0.47 0 1 

6. MID 1031 0.25 0.43 0 1 

 

The models are compared using two measures: The Predicting Power (PP) and Root Mean Squared Error 

(RMSE). PP measures the probability that the prediction model would yield exactly the same number of 

transferring passengers as the observed data. 

1
100%

1

0

N

j

j

j j

j

Y

PP
N

if t m
Y

otherwise


 


 




    

 (12) 

Where N = number of testing data 

t = target output value 

m = model output value 

While RMSE is a measure of the prediction error. 

2

1

1
( )

N

j j

j

RMSE MSE t m
N 

       (13) 

Table 3 compares the 4 proposed models of transfer demand prediction in terms of RMSE and predicting 

power (PP).  
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Table 3 Comparison of 4 prediction models of transfer demand  

Model RMSE PP (%) 

ANN 0.82 55.14 

ZIP 0.96 49.37 

ZINB 0.97 49.85 

SA 1.24 54.8 

 

Overall, ANN shows the lowest prediction error (RMSE) and highest predicting power (PP) compared to 

all other models. ZIP is slightly better than ZINB in predicting the transfer demand, whereas SA shows 

the highest RMSE.  

Figure 4 compares the 4 models in terms of their prediction errors RMSEi at each value of transfer 

demand. The RMSEi at target output value i (i, number of transferring passengers) is calculated by Eq. 

(14) 

2

1

1
( )

iN

i ij

ji

RMSE i m
N 

 
    

(14)

 

Where N = number of testing data where the number of transfer demand is i 

i = target output value 

mij = model output value 

 

Figure 4 RMSE comparison 

Figure 4 shows that ANN has significantly lower RMSE than all other 3 models, especially at high counts 

(>5) of transferring passengers. The RMSE of ANN is also relatively stable, whereas RMSE of other 3 

models increases as the counts increases. Other non-computational intelligence models, especially SA, 

predict poorly as the transfer demand increases, where the RMSEi is up to nearly 5. Similarly, Figure 5 

compares the predicting power of the models for different number of transferring passengers.  
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Figure 5 PP comparison 

Figure 5 illustrates that ANN has higher predicting power than the other three models, especially when 

the transfer demand is larger than 2. While all models show good predicting powers of 70-80% at zero 

count, only ANN maintains the predicting power of around 40% at counts of 1-8. Because counts 8-12 

contribute to very little sample size, all models show fluctuations in predicting power. The comparisons in 

RMSE and PP demonstrate that ANN is superior to ZIP, ZINB and SA in predicting the number of 

transferring passengers. Figure 6 provides snapshots of prediction errors and observed transfer demand 

for two random days from 7 AM to 10 PM. The stacked columns show the prediction error, calculated as 

predicted minus observed number of transferring passenger on an FV at a scheduled transfer time. The 

dashed line shows the observed transfer demand.     

 

Figure 6 Prediction errors versus observed transfer demand: Snapshots from two random day 
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The snapshots in Figure 6 show two important points discussed earlier in Figure 4 and Figure 5: (1) SA 

performs worst among the models, and (2) the models generally performs worse at larger counts of the 

transfer demand.  

Timed transfer coordination strategy framework 

This section proposes a simple coordination framework to evaluate the performance of four proposed 

transfer demand prediction models in real-time timed transfer coordination. Both holding and no holding 

decision in timed transfer coordination will induce some Extra Waiting Time (EWT) into transferring or 

non-transferring passengers. In holding decision, transferring passengers will have zero transferring time, 

but non-transferring passenger of the RV may have EWT, depends on whether the arrival time of the FV 

is before or after RV’s scheduled departure time. In no holding decision, transferring passengers will have 

to wait for an extra full headway for the next RV service, while non-transferring passengers will 

experience no EWT.  There are generally two cases where the RV arrived earlier or sooner than its 

schedule.  

1) Case 1: RV has just arrived at current time Ar, and it has arrived sooner than its schedule Sr (in 

minutes from 0:00) 

The rEWT (min) for non-transferring passengers of the RV, once transfer coordination decision has been 

issued is expressed as: 

 

 /

0

60f r r

r

f

e f r

r

A S LT N A S
EWT

A S

if  



 
 


   (15) 

Where rEWT = total EWT of non-transferring passengers of the RV at transfer coordination strategy 

(min) 

  r = index of the RV being controlled at the transfer stop 

  f = index of the FV approaching the transfer stop 

fA = arrival time of the FV to the transfer stop (min from 0:00) 

rS = schedule departure time of the RV from the transfer stop (min from 0:00) 

rN = number of non-transferring passengers of the RV 

eLT = extra loading time induced by extra passengers (transferring passengers) boarding the RV 

(seconds). eLT is the compilation of the lost time of FV stopping, passenger alighting time from FV, 

passenger walking time to RV, and passenger boarding time to RV.  

Holding time is the amount of time that RV is held beyond its scheduled departure time rS  to wait for 

FV’s arrival. 
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i
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


 



    (16) 

In reality, the holding time cannot exceed a predefined Slack Time (ST) because holding RV for too long 

is undesirable for on-board passengers and deteriorates downstream schedules [2]. 

Holdingtime ST
     (17) 

Conversely, if no transfer coordination has been issued, the EWT for transferring passenger to wait for the 

next service is calculated as  

 / 60

0

r f f f r

r

e

f
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S H A NLT i
EW

S

f A S
T

A

  








   (18) 

Where 
fEWT = total EWT of transferring passengers at no transfer coordination strategy (min) 

H = schedule headway of the RV (min) 

fN = number of transferring passengers from FV to RV 

Figure 7 illustrates Case 1 of the timed transfer in operational control problem 

 

Figure 7 Timed transfer in operational control: Case 1 (Ar < Sr) 

2) Case 2: RV arrived later than its schedule (
r r fS A A  ) 

The rEWT (min) for non-transferring passengers of the RV, once transfer coordination decision has been 

issued 
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    (19) 

Where rA = actual arrival time of the RV to the transfer stop (min from 0:00) 
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The holding time needed in this case is 

/ 60f erHoldingtime A LTA  
    (20) 

Similar to the previous case, this control is subject to the limit in the amount of planned ST 

Holdingtime ST
     (21) 

Conversely, if no transfer coordination has been issued, the extra cost for transferring passenger to wait 

for the next service could be calculated as 

 
 / 60f r f e fLTEWT S H A N  

    (22) 

Figure 8 illustrates Case 2 of the timed transfer in operational control problem 

 

Figure 8 Timed transfer in operational control: Case 2 (
r r fS A A  ) 

The timed transfer coordination control model solves a simple binary optimisation problem to choose the 

holding decision which cause least EWT to transferring and non-transferring passengers. RV is held if 

r fEWT EWT and leaves as scheduled otherwise. Where ,r fEWT EWT are the predicted EWTs of non-

transferring and transferring passengers, calculated using Equation (15) to (22). However, because the 

transfer demand (
rN ), non-transfer demand (

fN ), and vehicle arrival time ( fA ) are unknown in real-

time, rEWT  and 
fEWT are predicted using forecasted variables fN , rN , and A f . The controlled 

departure time rCD after timed transfer coordination could be calculated in Eq. (23). 
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Sensitivity analysis of transfer demand prediction in timed transfer coordination 

The proposed timed transfer coordination framework is empirically experimented using the same case 

study of Route 555 and Route 572 in SEQ, Australia as illustrated in Figure 3, using AVL and AFC data 

of October 2013.  

The predictions of rEWT  and 
fEWT require forecasted values of rN , fN and A f . Because predictions 

of non-transferring passenger demand ( rN ) and vehicle arrival time ( A f ) has been extensively studied 

in literature [20-22], this sub-section only examines the applicability of transfer demand prediction ( fN ) 

in timed transfer coordination. Given exact predictions of rN  and A f , Figure 9 compares the extra 

waiting time per passenger when the timed transfer coordination framework is implemented using 

different transfer demand predictor at different values of slack time (in minutes).  

 

Figure 9 Comparison of timed transfer coordination using different transfer demand predictor 

Figure 9 shows timed transfer coordination in general reduces the EWT per passenger, regardless of 

transferring or non-transferring, compared to the no coordination case. ANN shows the largest reduction 

in EWT compared to no coordination, while SA has the worst performance. If the transfer demand is 

known in real time, EWT per passenger can be further reduced by an additional 4.8% as compared to that 

of ANN. This indicates, further improvements in transfer demand prediction model should provide more 

benefits in reducing EWT per passenger with the proposed timed transfer coordination strategy. 

According to the Table 3, these models have relatively low predicting power, denotes that the models 

sometimes fail to predict the exact number of transferring passengers. However, the reductions in EWT 

are promising because of the relatively low RMSE, where the proposed predictors were able to forecast 

with approximately 1 passenger deviation from the observed value. Table 4 provides a lookup table to 

select a transfer demand predictor to be used in proposed timed transfer coordination strategy according 

to its accuracy and computation time cost for real time applications.  

Table 4 Descriptive statistic of proposed transfer demand prediction models 
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required time (min) time* (min) EWT** (%) 

ANN 6 560 0.04 0.82 55.14 21.9 

ZIP 6 205 0.01 0.96 49.37 20 

ZINB 6 221 0.01 0.97 49.85 20.3 

SA 2 0 <0.01 1.24 54.8 15.2 

*Computation time is the time required for a trained model to provide prediction given all the inputs, 

both training and computation tasks were performed using Matlab R2015a using an Intel Core i5-2520M 

computer with 8GB Ram.  

**Saved EWT compared to no coordination, when ST equals 5 minutes 

ANN provides the most accurate prediction, but also requires more time than any other model for training 

and predicting. Conversely, SA shows the lowest prediction accuracy and also worst performance in 

timed transfer coordination, but requires the least time & variables with a closed-form solution. Figure 4 

and Figure 5 suggest that while the proposed models provide similar performance at low target values 

(e.g. i equals 0, 1 or 2), ANN provides significantly better prediction when the number of transferring 

passengers is larger. More transferring passengers generally means that transfer coordination is necessary. 

ANN therefore should be chosen as the predictor if there is more transfer demand, whereas SA should be 

chosen when a simple closed form solution is favourable in a system with less transfer demand.  

Sensitivity analysis of HP 

HP is an important variable in transfer demand prediction, denoting the number of passengers who have 

high probability of transferring, or are “likely to transfer”. The definition of HP decides the value of 

parameters HP and LP. If the threshold for “likely to transfer” is low, the value of HP is large, but for 

each passenger the confidence that he/she would actually transfer is low, and vice versa. Figure 10 shows 

SA and ANN’s prediction performance at different value of “likely to transfer” threshold. 

 

Figure 10 Sensitivity analysis of the definition of HP 

Both SA and ANN show higher prediction error when the definition of “likely to transfer” is too low or 
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Conclusion 

This paper introduces a new transfer demand prediction method for real-time timed transfer coordination. 

The transfer demand is predicted using individual passenger travel pattern by examining each passenger 

historical travel itineraries. Four predictors of transfer demand have been developed: ANN, ZIP, ZINB 

and SA. Here, ANN outperforms the other models, while SA takes the least time to train and compute. 

When experimented using observed AVL and AFC data from SEQ, Australia, timed transfer coordination 

using these models reduces EWT per passenger up to 21.9% as compared to no coordination.  

This paper is one of the first to predict the number of transferring passenger in real time and to show that 

timed transfer coordination is effective using forecasted transfer demand. It provides the missing link to a 

better transfer service in public transit. Transit agencies can choose between artificial intelligence models 

of higher accuracy but without a closed-form solution when the transfer demand is large, or statistical and 

analytical models of lower accuracy but with an interpretable formulation when the transfer demand is 

low.   

This paper only thrives to show the possibility of predicting the transfer demand in real time using a 

simple transfer coordination case study of a single receiving and feeding transit line. Future examinations 

include the impacts of transfer demand prediction on a transit network of multiple connected lines.  
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