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Large-scale Transit Market Segmentation with Spatial-Behavioural Features

Le Minh Kieu1 , Yuming Ou1 , Chen Cai1
1 Data61, CSIRO, Sydney, Australia

Abstract

Transit market segmentation enables transit providers to comprehend the commonalities and hetero-

geneities among different groups of passengers, so that they can cater for individual transit riders’ mobility

needs. The problem has recently been attracting a great interest with the proliferation of automated data

collection systems such as Smart Card Automated Fare Collection (AFC), which allow researchers to ob-

serve individual travel behaviours over a long time period. However, there is a need for an integrated market

segmentation method that incorporating both spatial and behavioural features of individual transit passen-

gers. This algorithm also needs to be efficient for large-scale implementation. This paper proposes a new

algorithm named Spatial Affinity Propagation (SAP) based on the classical Affinity Propagation algorithm

(AP) to enable large-scale spatial transit market segmentation with spatial-behavioural features. SAP seg-

ments transit passengers using spatial geodetic coordinates, where passengers from the same segment are

located within immediate walking distance; and using behavioural features mined from AFC data. The

comparison with AP and popular algorithms in literature shows that SAP provides nearly as good clus-

tering performance as AP while being 52% more efficient in computation time. This efficient framework

would enable transit operators to leverage the availability of AFC data to understand the commonalities

and heterogeneities among different groups of passengers.
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1. Introduction

Maintaining service quality and customer satisfaction is challenging for transit operators due to the

heterogeneity in passengers spatial locations and travel patterns. Passenger behaviours and needs vary across

different market segments from transit commuters to infrequent passengers, or from adults to students and

senior passengers (Kieu et al., 2015b). Complex urban structures of spatially diverse educational, recreational

and occupational locations further nurture the diversity of these segments and complicate service provisions.

Ridership competition from private transport and new shared-mobility transport such as carsharing and

ridesourcing (e.g. Uber or Lyft) also forces transit operators to understand more about their customers and

cater individual needs.

Market segmentation is a popular procedure in economics to classify a market of customers into seg-

ments sharing similar interests, needs or locations. Market segmentation is essential for transit operators to

understand the commonalities and heterogeneities among different groups of passengers. It aims to define

specific subsets of passengers sharing similar characteristics in demographics, psychograpic, geographic or

behavioural so that transit operators can break down the mobility requirements of everyone and align their

services to specific needs. Understanding the individual needs will enable operators to implement: (1) tar-

geted surveys to understand specific groups of passengers, (2) incentives and personalised transit service to

reward loyal passengers, and (3) on-demand services for under-served areas or during incidents.

The most basic form of transit market segmentation is through age and social situations, which are

usually Adult, Senior, Child, and Student. While this level of market segmentation is useful for ticketing

purposes, it provides unbalanced segments where customers do not share similar interests, needs or locations.

Research on transit market segmentation started early with a study by Tybout et al. (1978), but has only

recently been attracting a great interests with the proliferation of automated data collection systems such

as Smart Card Automated Fare Collection (AFC). Smart Card AFC data captures a rich information that

can potentially reveal a more comprehensive understanding of passenger travel patterns and mobility needs.

Literature of data-driven studies using Smart Card data has evolved from simple data enriching studies

(Alfred Chu and Chapleau, 2008, Bagchi and White, 2005), to mining individual temporal-spatial travel

patterns (Kieu et al., 2015a, Kusakabe and Asakura, 2014, Ma et al., 2013) and recently to improvements

of transit operation, such as predicting passenger flow (Kieu et al., 2017, Li et al., 2017, Ma et al., 2014) or

vehicle arrival time estimation (Min et al., 2016, Zhou et al., 2017).

Literature offers a number of approaches to transit market segmentation using Smart Card AFC data.

Agard et al. (2006) adopted the Hierarchical Ascending Clustering to segment transit passengers using only

temporal travel patterns. Lathia et al. (2013) applied Agglomerative Hierarchical Clustering to segment

passengers using temporal travel profiles, aggregated in five daily time periods. Kieu et al. (2015b) adopted

a bi-level Density-based Scanning Algorithm with Noise (DBSCAN) (Ester et al., 1996) to mine individual
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travel patterns and then proposed a priori segmentation method to segment transit passengers. Legara and

Monterola (2017) introduced the concept of eigentravel matrices to capture passenger travel characteristics

and developed a classification technique with promising accuracy. Langlois et al. (2016) inferred passenger

travel patterns through a longitudinal representation of multi-week activities. Passenger travel areas were

clustered using Agglomerative Hierarchical Clustering, and then longitudinal travel patterns were clustered

by principal component analysis. Briand et al. (2017) clustered transit passengers of Gatineau City, Canada

using a Gaussian mixture model with Classification Expectation Maximisation. The proposed model is

capable of cluster passengers based on continuous temporal travel activities. A model-based mixture model

using Expectation Maximisation was also proposed in El Mahrsi et al. (2017), where the authors proposed

two approaches to cluster transit passengers from a station-oriented and a passenger-focused standpoints

using their temporal travel patterns.

Understanding the geographic market segments in the transit industry is indeed essential because transit

service provision is spatially limited. Transit passengers usually walk to stops, thus their rational travel

choices often limit within a walking distance. Transit operators who can leverage such spatial understanding

about passenger segments will be able to provide better services. For instance, travel information can be given

to passenger segments at areas influenced by an incident. The impact of future transit management plans

can be foreseen given the passenger segments on the impacted areas. Spatial transit market segmentation

is also helpful for passenger choice modelling, such as modal and route choices, because passengers of the

same segment living closely are sharing similar travel behaviours and facing a similar choice set.

However, the consideration of individual geographical characteristics in existing passenger segmentation

studies is relatively limited. In the conclusion of their work, Agard et al. (2006) recognised that the inclusion

of geospatial trip behaviour would enable better understanding of transit supply and demand. In Lathia

et al. (2013), the spatial characteristics of each passenger are considered as the number of visited stations,

rather than the spatial proximity of adjacent stations. Langlois et al. (2016) considered spatial proximities

when clustering the user-specific areas using a predefined threshold distance value among stops/stations.

There remains a need for integration of spatial and behavioural features in an integrated spatial-behavioural

transit market segmentation.

In this paper, we define the concept of spatial-behavioural passenger segments as the spatially-limited

clusters of passengers who have similar behaviours. Identifying these spatial-behavioural segments is chal-

lenging. First, a new distance metric will be required to incorporate spatial and behavioural features in

segmentation, because they are in different units of measures. Second, since transit service provision is

spatially limited, it is important to predefine a maximum spatial size value ∆ for each passenger segment.

Segment’s spatial size measures the maximum distance from any two passengers belong to the same seg-

ment. If ∆ is large, passengers might be less spatially relevant to each other, but there might be more

chances to find passengers of similar travel behaviours. For instance, let us say that a transit provider
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wants to find spatial segments of regular passengers in an area to provide a coach service. To maximise

the utility of each vehicle and limit the boarding time, the transit provider may stop the coach only at the

centre of each spatial-behavioural passenger segment, and ask the passengers to walk to those predefined

stops. In this example if the spatial size is large, the walk would be more tiresome, though may be more

regular passengers can be grouped together to maximise vehicle’s utility. If the spatial size is small, the

average walking distance would be convenient, but there might also be less passengers of similar behaviours

in each spatial-behavioural passenger segment. Too small ∆ may even lead to spatial singletons, those are

segments at a single location, which is unfavourable from an efficiency point of view. It is challenging to

define ∆ because the data-driven passenger segmentation results depend on the spatial and behavioural

distributions of passengers’ characteristics. Choosing a value of ∆ may require inputs from an expert with

domain-knowledge, since an increase in ∆ may lead to an increase in both similarity among passengers of

the same segment, and an increase in passengers’ walking distance. Multiple implementations of the transit

market segmentation algorithm with different values of ∆ may be required.

The search for a value of ∆ leads us to another problem in large-scale transit market segmentation:

scalability. Existing literature in transit market segmentation have been often developed using a random

sub-sample of limited size, such as in Lathia et al. (2013), especially when the number of market segments are

usually not known, so that a hierarchical method is required (Lathia et al. (2013),Agard et al. (2006),Langlois

et al. (2016)) or multiple runs with different number of segments are required (Briand et al. (2017),El Mahrsi

et al. (2017)). Kieu et al. (2015b) is an exception where over a million of Smart Cards were considered, but

the segmentation method is rather simplistic with a set of a priori heuristic rules. Table 1 shows the number

of Smart cards, number of trips considered and method adopted in existing transit market segmentation

studies.

Table 1: Comparison of existing literature on transit market segmentation

Paper Number of

Cards

Number of trips Method

Agard et al. (2006) 25452 2147049 Hierarchical Ascending Clustering

Lathia et al. (2013) 2000 Not available Agglomerative Hierarchical Clustering

Kieu et al. (2015b) 1 million 34.8 million A priori Heuristic Rules

Langlois et al. (2016) 33026 Not available Agglomerative Hierarchical Clustering

Briand et al. (2017) 82223 3492310 Expectation Maximisation

Legara and Monterola

(2017)

30000 Not available Multiple Machine Learning methods

El Mahrsi et al. (2017) 134979 5404096 Expectation Maximisation
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Addressing the limitations of existing methods, this paper introduces a new approach to transit spatial-

behavioural passenger segmentation on a large scale, where transit passengers of spatially close distance who

behave similarly are grouped in a market segment. As discussed earlier, information on these condensed

spatial segments enables transit operators to develop transit tactical and operational strategies. However,

we expect that there will be thousands of segments and millions of passengers on a large-scale case study

of a large metropolitan area, so a scalable and transferable method will be developed. The contributions

of this paper are two fold. First, we develop a framework to incorporate spatial and behavioural features

into spatial-behavioural passenger segmentation. Second, we propose an algorithm to implement spatial-

behavioural market segmentation with varied maximum spatial size ∆ on a large scale scenario.

The remainder of this paper describes the related works, the proposed methodology, the numerical

comparison with some other algorithms in literature and finally the large-scale case study.

2. Related work to the research challenge

Market segmentation is an unsupervised clustering problem. Each customer, or transit passenger in our

problem, is a data point i in a multidimensional space of features.

The first research challenge, as discussed in the introduction, comes when the feature space of each data

point includes both spatial and non-spatial variables. Spatial variables show the location of each transit

passenger, for instance the Latitude and Longitude [dilat, dilon] coordinates of each data point, while non-

spatial variables showing other characteristics of each data point. One major problem with incorporating

spatial and non-spatial feature is that the distance measure between any two points is no longer satisfy the

triangle inequality. In other words, the sum of the distance/dissimilarity between any one data point to

two other points should be larger than the distance between those two points. Incorporating spatal and

non-spatial features means that one data point may be ’very close’ to another point spatially, but ’very

far apart’ non-spatially. Popular clustering algorithms such as K-means (Hartigan and Wong, 1979) or

Expectation Maximisaion (EM) assume the validity of triangle inequality. One quick solution is to perform

a bi-level clustering approach where each level segments one type of features, for instance cluster all the

points by their spatial features first, then non-spatial features. Each level of clustering still satisfies the

triangle inequality. One very popular example of them is the Spatial Dominant CLARANS (Clustering

Large Applications based on RANdomized Search) (Ng and Han, 1994), where the authors proposed to

cluster large-scale spatial features first, then explored non-spatial features within each cluster. However,

multiple-level clustering means that the problem is tackled from different angle multiple times, which may

lead to some loss of information because the results of the earlier clustering level(s) affect the later. For

instance, two very similar data points may not have any chance to be group into the same cluster on level

two if they are on different cluster on level one.
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There are a few other clutering algorithms which do not assume triangle inequality, such as Spectral

Clustering (Von Luxburg, 2007), DBSCAN (Ester et al., 1996), Partitioning Around Medoids (Kaufman

and Rousseeuw, 1990) and Affinity Propagation (Frey and Dueck, 2007). These methods, instead of relying

on the ’locations’ of data points to cluster data, rely on a distance or similarity measure between data

points. A modification of the original algorithm is usually required to incorporate both spatial and non-

spatial features into the same distance/similarity measures to cluster points, while allows a single level

of clustering. Birant and Kut (2007) proposed the ST-DBSCAN algorithm, which was an extension of

DBSCAN, by introducing one more neighbourhood radius value Eps(ε) to represent non-spatial variables,

along with the original radius value to represent spatial variables. The density-reachable neighbourhood was

the intersection between the neighbourhood defined by the two radius value. Wang et al. (2004) proposed

another extension of DBSCAN named Density-Based Spatial Clustering in the Presence of Obstacles and

Facilitators (DBRS+). The algorithm clustered spatial data with 3 parameters Eps, MinPts, and MinPur,

where MinPur is the additional parameter compared to the classical DBSCAN to differentiate points with

different non-spatial properties. However, there are less existing algorithms consider spatial constraints when

incorporating spatial and non-spatial features. Spatial constraints are required in our problem because one

of the objectives is to find spatially small cluster within an immediate vicinity of a walking distance. As

discussed above, it is challenging to find an optimal value for the spatial constraints due to the complexity

and computation burden of the problem.

The second research challenge involves the scalability of market segmentation. We aim to find spatially

small market segments within an immediate vicinity, and within each of those areas there may be several

segments with different non-spatial features, thus the number of market segments may be very large. It is

even more challenging when the number of cluster is unknown before hand, so methods requiring multiple

runs to get the optimal number of clusters such as K-means, Spectral Clustering and EM will be more

expensive. Several other methods do not require the number of clusters predetermined, such as DBSCAN,

HDBSCAN Campello et al. (2013) or hierarchical clustering. However, such algorithms possess a high

computational complexity and are infeasible for a large-scale clustering problem.

Therefore, the method we will propose here should incorporate both spatial and non-spatial features

under a custom distance/similarity metric, while maintain spatially small clusters. The method should not

require the number of clusters and maintain high segmentation quality, while remain scalable for large-scale

clustering implementations.

3. Methodology

Given a database of N passenger i (i = 1...N) with spatial geodetic coordinates of Latitude and Longitude

[dilat, dilon] and a vector of behavioural features [V i1 , V i2 , ..., V iD], normalised between [0,1], with D is the
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number of features. Our objective is to cluster this data to K segments Cm (m = 1...K) where K is

unknown before hand, and the spatial size ϕm of Cm is less than a walking distance threshold ∆. Assuming

the majority of transit passengers walk to transit stops, the spatial size ϕm is the maximum walking distance

between any two points from the same segment. Since [dilat, dilon] are geodetic coordinates and ∆ is a walking

distance, ϕm is defined as the maximum Euclidean distance between the coordinates of any two points i, j

in Cm. Note that for short distance, Euclidean and great-circle distance metrics such as Haversine yield

similar results.

To address the problem of incorporating spatial and behavioural features with spatial constraints; as

well as aiming for the large-scale implementation, we propose a modification of Affinity Propagation (Frey

and Dueck, 2007) in this section.

3.1. Classical Affinity Propagation

Affinity Propagation (AP) is a relatively new clustering algorithm proposed by Frey and Dueck (2007).

We adopt AP as the base algorithm because it (1) does not require a predetermined number of clusters,

(2) supports a custom distance/similarity metric, thus potentially supports the integration of spatial and

non-spatial features, and (3) it produces clusters with much less errors than similar algorithms (Frey and

Dueck, 2007). AP aims to find ’exemplars’ among data points to represent the dataset and forms clusters

of around these exemplars. The input of the algorithm is pair-wise similarities between data points s(i, j)

(i, j = 1...N). Given the similarity matrix, AP finds exemplars that maximise a net similarity, which is the

overall sum of similarities between exemplars and their represented data points. It first considers all data

points as exemplars, where each point k is assigned a value of ’preference’ s(k, k) that reflects how suitable it

is to be chosen as an exemplar for itself. Data points then exchanges two kinds of messages to other points,

which describe the current affinity that one data point has for choosing another data point as its exemplar,

until a good set of exemplars converges.

The first type of message is called ’responsibility’ r(i, j), which is a message from point i to j with the

accumulated evidence on how suitable it would be for point j to serve as the exemplar for point i. The second

type of message is called ’availability’ a(i, j), which is a message from point j to i with the accumulated

evidence on how suitable it would be for point i to choose point j as its exemplars. Both r(i, j) and a(i, j)

are set to zero at the first iteration, and got iterated until convergence as follows:

r(i, k) = s(i, k)−max
k′ 6=k
{a(i, k′) + s(i, k′)} (1)

a(i, k) = min{0, r(k, k) +
∑

i′ 6∈{i,k}

max(0, r(i′, k))} (2)

While the self availability a(k, k) is updated as follows:

7



a(k, k) =
∑
i′ 6=k

max{0, r(i′, k)} (3)

The algorithm converges after the clustering results remain stable after a number of iterations. Then

for each point i, the value of k that maximises a(i, k) + r(i, k) either means that point i is an exemplar, if

k = i, or means that point k is the exemplar of point i, if k 6= i. To avoid numerical oscillations, a damping

factor λ is also added to the calculation of r(i, k) and a(i, k).

ri+1(i, k) = λ ∗ ri(i, k) + (1− λ) ∗ ri+1(i, k) (4)

ai+1(i, k) = λ ∗ ai(i, k) + (1− λ) ∗ ai+1(i, k) (5)

For more details on the classical AP algorithm including a graphical example, interested readers may

refer to the original paper by Frey and Dueck (2007).

3.2. Spatial Affinity Propagation

This section proposes a modification of the Classical Affinity Propagation to solve the two aforementioned

problems: (1) incorporation of spatial and behavioural features, and (2) large-scale implementation. We

name this algorithm the Spatial Affinity Propagation (SAP). Three main inputs of the SAP algorithm are

(1) Passenger data, (2) Similarity metric and (3) ∆. The Passenger data, as described, should include a

vector of spatial geodetic coordinates [dilat, dilon] and a vector of behavioural features [V i1 , V i2 , ..., V iD] for each

passenger i. To ease the explanation of SAP, we define the ∆− neighbourhood and spatially-reachable as:

Definition 1. ∆−neighbourhood φ(k) is a subset contains all passengers within a radius ∆ around passenger

k

Definition 2. Passenger i is spatially-reachable from passenger j and vice-versa if i ∈ φ(k)

The workflow of SAP is illustrated in Figure 1.

The first step is calculation of the Initial Similarity matrix using a predefined Similarity metric. The

Similarity metric, which defines how a passenger i is similar to a passenger j, is described in Equation 6.

s(i, k) =


∑D
d=1 γd

[
1− |V i

d−V
k

d |
|V i

d
|+|V k

d
|

]
i ∈ φ(k)

0 otherwise

(6)

Equation 6 is an adaptation of the Canberra distance metric (Lance and Williams, 1967), where γd is a

predefined weight for variable d,
∑D
d=1 γd = 1. The Canberra distance has been adopted because we expect a

highly skewed behavioural features data [V n1 , V n2 , ..., V nD ]. For instance, in areas near the train stations, there
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Figure 1: Spatial Affinity Propagation Algorithm

may be many more train riders than passengers of other modes. The adaptation of Canberra distance is

introduced in Equation 6 to alleviate this problem, because the Canberra distance is the absolute difference

between two data points over their sum. We did not use data transformation because it is easier for transit

providers to interpret the values of [V n1 , V n2 , ..., V nD ] without data transformation. The weight γd defines the

relative importance of variable d against other variables and allows transit providers to perform targeted

market segmentation where some features are more important than the other. γd equals zero is equivalent

to completely removal of the feature d for consideration.

Recall that [V n1 , V n2 , ..., V nD ] are to be normalised between [0,1], Equation 6 shows that max(s(i, k)) = 1

and min(s(i, k)) = 0. The value of s(i, k) also equals zero if passenger i and k are not spatially-reachable,

which means the two passengers will not be clustered in the same segment. Calculation of s(i, k) for every

i, k ∈ N makes up the Initial similarity matrix. Thus ∆ has been introduced in SAP as spatial constraints

to limit the spatial sizes of each passenger segment. However, indexing the point membership for s(i, k)

calculation is very expensive in a näıve approach because each point k requires a neighbourhood search,

i.e. calculating the spatial distances to every other points in the dataset. We implement the neighbourhood

search and distance calculation using a Spatial Indexing algorithm. Spatial Indexing algorithms, such as

KD-tree Bentley (1975), R-tree and R*-tree Beckmann et al. (1990) and Quadtree Samet (1984), organise
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the data space and data points in a clever way that only parts of the data needs to be considered in a

neighbourhood search query. We adopt the KD-tree Bentley (1975) in the SAP algorithm because of its

simplicity and availability in commonly used software packages.

The second step is a slightly modified Availability and Responsibility updates, which can be formulated

as:

r(i, k) = s(i, k)− max
k′ 6=k
k′∈φ(i)

{a(i, k′) + s(i, k′)} (7)

a(i, k) = min{0, r(k, k) +
∑

i′ 6∈{i,k}
i′∈φ(k)

max(0, r(i′, k))} (8)

a(k, k) =
∑
i′ 6=k
i′∈φ(k)

max{0, r(i′, k)} (9)

Up until this point the value of ∆ is deterministic, i.e. we choose a value of ∆, implement the modified

AP, and collect the clustering results. However, recall that it is challenging to find a suitable value of ∆

because it affects the spatial size, number of spatial singleton, the similarities of passengers within a segment,

and the differences of passengers across segments. As ∆ increases, each passenger is spatially-reachable to

more passengers, facilitating the search for good clustering results to maximise the net similarity. Therefore,

it is likely that the net similarity will increase each time ∆ increases to ∆ + σ. Choosing the value of ∆ is a

trade-off between the net similarity and the spatial size of passenger segments. The best way to deal with

this problem is actually to evaluate all possible values of ∆ to see which is best for the dataset, and let ∆

to be chosen by a transit operation expert.

In the Classical AP algorithm, segmentation outputs are only retrievable after a full implementation of

the algorithm. One simple solution to evaluate different ∆ would be to run AP multiple times, each time

with a different value of ∆. However, one significant weakness of the Classical AP is its time complexity,

which is believed to be O(N2T ), where N represents the number of data points and T represents the number

of iterations. If there are D values of ∆ needs to be evaluated, the time complexity will be O(D ×N2T ).

Therefore, we introduce another rigorous, yet flexible extension of the Classical AP to incorporate a

variable ∆, which varies between predefined values for minimum ∆min and maximum ∆max. The value

of ∆max is the maximum walking distance that is considered acceptable for most passengers, while ∆min

is the minimum size of each passenger segment. Our algorithm generally starts at ∆ = ∆min. We then

perform Availability and Responsibility updates using Equation 7 to 9, until a Local convergence is reached.

The Local convergence criteria is satisfied when the changes in segmentation results are less than or equal to

C after a certain number of iteration. Note that this is a generalisation of the Classical AP, where C equals
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zero will ensure the same convergence criteria as in Frey and Dueck (2007). The convergence variable C is

introduced to generalise the algorithm to allow easier convergence in when there are numerical oscillating

and volatility; or when computation time is an important factor.

The next step is to increase the value of ∆ by a step σ, and index all passengers who are now spatially-

reachable to new passengers compared to the previous step. These are the passengers that may have their

segmentation changed as the result of the maximum spatial size increases from ∆ to ∆ + σ. An example of

changes in the ∆− neighbourhood is illustrated in Figure 2.

j

i
j(i)

k

D=Dmin

j

i
j(i)

k

D=Dmin+s

i(k)i(k)

j(k) j(k)

Figure 2: An example of changes in ∆− neighbourhood

Figure 2 shows an example where passenger i was first only spatially-reachable to passenger j as ∆ =

∆min, but after that also spatially-reachable to passenger k as ∆ increases to ∆min + σ. We introduce

here two other definitions to help explaining the SAP algorithm.

Definition 3. Border passengers are those who are spatially-reachable to new passengers as a result of the

change in the maximum spatial size ∆

Definition 4. Border-reachable passengers are those who are not Border passengers, but are spatially-

reachable to Border passengers.

In the example in Figure 2, passenger i and k are Border passengers, and passenger j is a Border-

reachable passenger. Note that since every point will reach to a further distance ∆min+ σ, any point can

be a Border or Border-reachable passenger.

Compared to the Classical AP algorithm, SAP does not reset all Availability and Responsibility matrices

to zero and start a fresh Availability and Responsibility updates as ∆ increase to ∆ + σ, but only resets the

Availability of Border and Border-reachable passengers. The algorithm carries the Responsibility matrix and

the non-Border-reachable passengers’ Availability matrix forward to accelerate a Local convergence, because

passengers who are exemplars in the previous step of ∆ are likely to be exemplars again. We still perform

Availability and Responsibility updates of every passengers because passengers who are not the exemplars in

the previous step may be an exemplar in the next time step. The SAP algorithm continues until ∆ = ∆max

or a Global convergence criteria has been reached. The Global convergence criteria is similar to the Local

convergence, which is when the segmentation results remain stable for a certain number of steps of ∆.
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Recall that an increase in ∆ will also facilitate the search for passenger segments, our hypothesis is

that the algorithm will find near-optimum solution quicker with less numerical oscillating and volatility.

We further introduce an adaptive Local convergence criteria to enhance SAP’s efficiency in large-scale

implementation. Algorithm 1 is a Local converge check algorithm with adaptive convergence threshold C.
Algorithm 1: Adaptive Local convergence criteria

Input: Segmentation results idx,

Convergence threshold C,

Convergence iteration count threshold convits,

max(netsim) = Net similiarity of the previous Local convergence,

Unconverged = Yes

1 while Unconverged = Yes do

2 Calculate the current net similiarity netsimt by Availability and Responsibility updates;

3 if netsimt > max(netsim) then

4 C = ρnetsimt−max(netsim)
max(netsim) + C

5 max(netsim) = netsimt

6 if Count of unchanged idx ≤ 1− C then

7 Convergence iteration count + 1 ;

8 if Convergence iteration count ≥ convits then
Output: Unconverged = No

Parameter ρ controls the convergence rate, with SAP reaches the convergence faster if ρ is larger, and

ρ equals zero will keep C unchanged, similar to the Classical AP. The idea of using ρ is to adaptively relax

the convergence criteria if a better solution than the previous converged net similarity has been found.

4. A framework to Spatial Transit Passenger Segmentation

This section describes the process to implement the proposed SAP algorithm using observed Smart Card

data.

4.1. Dataset

This paper uses a 40-day Smart Card AFC data from New South Wales, Australia (NSW). The data

consists of over 2.4 million of Smart Card over large metropolitan areas in NSW, including Sydney, Newcastle

and Wollongong City. Each row of the dataset includes a hashed unique card ID, tap-on and tap-off locations

and timestamps of every Smart Card transactions over the study period from February to March 2017. The

data consists all the public transport modes and routes in NSW, which are bus, city train, ferry and light

rail system.
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We focus on the passengers who have at least 10 journeys over the 40-days study period to increase the

reliability of data. The 10 journeys threshold has been chosen because of the nature of the Smart Card

data in practice, where a passenger may hold several Smart Cards, and there are many less active Smart

Cards from private transport users. The data used for the analysis contains 587,791 passengers satisfying

this requirement.

4.2. Spatial features extraction

This section aims to find the spatial geodetic coordinates [dnlat, dnlon] of each passenger n (n = 1...N).

The challenge comes when we do not have the actual home locations of Smart Card users in our AFC data.

Therefore, we take the most frequent first transit stop that a passenger usually take in the morning, and all

other stops within the an immediate vicinity of 500m from this stop. Without any loss of generality of the

proposed algorithm, we assume that the calculated centroid of all these stops is also the passenger’s home

location. The centroid is used instead of the most frequent stop itself because it allows some flexibility in

passenger’s route and stop choice behaviours, as well as to increase in diversity in the spatial dataset. In fact,

it is a real data challenge to obtain the actual locations of Smart Card users due to privacy issues related

to tracking passengers’ home locations. Figure 3 shows the estimated home locations of transit passengers

in New South Wales, Australia.

4.3. Behavioural features extraction

The behavioural features in this study represent the travel behaviour of each passenger. For each in-

dividual passenger, they are Frequency of use, Randomness of travel behaviour, Frequency of Train usage,

and Frequency of Transfers. They are calculated as follows:

• Frequency of use (V n1 ) is the number of days that passenger n made at least one journey over the

total number of days (40 days). For transit operator, this feature provides a reliable prediction for

patronage, because frequency of use is generally the probability of passenger n to use public transport

on the study day.

• Randomness of travel behaviour (V n2 ) is the number of unique tap-on and tap-off pairs that the

passenger n travelled over the overall number of journeys. For transit operator, this feature enables

an prediction of demand mobility, such as Origin-Destination matrix, because regular passengers are

more likely to maintain a travel pattern.

• Frequency of Train usage (V n3 ) is the number of train journeys that the passenger n made over the

overall number of journeys. This feature is a representation of the modal choice.

• Frequency of Transfers (V n4 ) is the number of journeys with at least one transfer that the passenger

n made over the overall number of journeys. This feature is generally a representation of the route
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Figure 3: The spatial locations of transit passengers in the dataset

choice, to see if the passenger is willing to take an alternative with transferring or not. It also shows

the connectivity characteristic of the transit network.

5. Numerical case studies

This section describes two numerical case studies to show the passenger segmentation results from SAP.

The first case study is a numerical experiment of only over 4000 passengers, which aims to compare the

proposed Spatial Affinity Propagation (SAP) with the Classical Affinity Propagation (AP) and two popular

algorithms: K-means (Hartigan and Wong, 1979) and Hierarchical Agglomerative Clustering (Johnson,

1967). The second case study is a large-scale study using the whole dataset of 587,791 passengers.

5.1. First case study: a limited sample experiment for comparison

This section compares the proposed Spatial Affinity Propagation (SAP) with the K-means, Hierarchical

Agglomerative Clustering and Classical Affinity Propagation (AP). To simplify the comparison, we imple-

ment the algorithms on a subset of the whole dataset where the Latitude dnlat is larger than -32.8 degree.

The comparison subset is 4031 passengers. It is fairly straight forward to choose the range [∆min,∆max].

∆min should be large enough so that clustering makes sense, so we set ∆min equals 500 m. ∆max should
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be the maximum walking distance, so ∆max equals 1500m in this case study. The spatial step has been

chosen as 200m.

First, we adopt a bi-level clustering approach for both K-means (Hartigan and Wong, 1979) and Hier-

archical Agglomerative Clustering (Defays, 1977), which are called K-K and H-H, respectively. A major

challenge comes in implementation of K-means and Hierarchical Agglomerative Clustering is to choose the

number of clusters. There are multiple solutions to this problem and among them we adopt the Silhouette

index, which is a popular, proven and effective method to find the number of clusters (Rousseeuw, 1987).

Silhouette statistic for each passenger n is calculated as follows:

s(n) = b(n)− a(n)
max{a(n), b(n)} (10)

Where a(n) is the mean distance between passenger n and all other passengers within the same cluster,

and b(n) is lowest mean distance between passenger n and all other cluster where n is not a member. The

mean value of all s(n) (n = 1, 2, ...N) is the mean Silhouette index.

The first level of both K-K and H-H is spatial only, i.e. clustering of geodetic coordinates [dnlat, dnlon].

For the first level of H-H, we adopt the Complete-linkage Hierarchical Agglomerative Clustering, and use

the maximum walking distance ∆ as the cut-tree threshold to limit the spatial size of each cluster to be

∆, which will fit well to the Criterion 1 as described in Section ??. For the first level of K-K, we run the

K-mean algorithm with the number of clusters varies from small to very large, and then choose the outputs

that (1) maximise the mean Silhouette index, (2) has the maximum spatial size of segments to be smaller

than ∆, and (3) minimise the number of clusters. Euclidean distance is used as the distance metric in the

first level.

The second level of both K-K and H-H deals with behavioural features only [V n1 , V n2 , ..., V nD ]. We im-

plement K-means and Complete-linkage Hierarchical Agglomerative Clustering multiple times until the

Silhouette index is maximised.

Second, we implement the Classical Affinity Propagation (AP) as described in Frey and Dueck (2007).

The calculation of the Similarity matrix follows Equation 6 using KD-tree structure for indexing spatially-

reachable passengers. The algorithm is implemented multiple times for each value of ∆ from ∆min to

∆max. The Local convergence criteria strictly follows Frey and Dueck (2007), which means C equals zero

in this experiment.

Third, we implement a slight modification of the Classical AP by introducing the Local convergence

threshold C. Multiple experiments show that a small value of C is sufficient to enhance the computation

time. Thus C is set equal 0.005. This algorithm is called AP-C. The algorithm is also implemented multiple

times for each value of ∆ from ∆min to ∆max.

Fourth, we implement another modification of the Classical AP by introducing the variable ∆. This
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algorithm is closer to SAP than AP, because similar to SAP, it only updates the Availability and Respon-

sibility of non-border-reachable passengers after the first step of ∆. C is also set equal 0.005. Note that

we only have to run this algorithm once with a variable ∆ from ∆min to ∆max. This algorithm is called

SAP-C.

Finally, the Spatial Affinity Propagation (SAP) is implemented as described in Section 3.2. The adaptive

convergence is implemented with ρ equals 0.1 and C starts at 0.005. Only one run of SAP is required for a

variable ∆ between ∆min and ∆max. Table 2 summaries the algorithms for comparison in this experiment.

Table 2: Description of the algorithms in comparison.

Algorithm Description Objective function

K-K K-means clustering on geodetic coordinates first, then another K-means

clustering on the behavioural features

Silhouette index

H-H Hierarchical Clustering on geodetic coordinates first, then another Hier-

archical Clustering on the behavioural features

Cut-tree & Silhou-

ette index

AP KD-tree structure, multiple runs with different ∆ Net similarity

AP-C Similar to AP, but with Local convergence threshold C equals 0.005 Net similarity

SAP-C Similar to AP-C, but with variable ∆ and selective Availability and Re-

sponsibility updates

Net similarity

SAP Similar to SAP-C, but with adaptive C Net similarity

Figure 4 shows an example of the segmentation results from K-K and H-H algorithms on an area of

mixed population density. Each colour represents a spatial passenger segment. For segments of more than 2

spatial locations, we also plot and fill a convex hull of the area that the segment covers. Thus in Figure 4, a

point without bounded envelope is a spatial singleton. From a segmentation point of view, spatial singletons

are unfavourable because they are clusters of a single data point.

Figure 4 shows that both K-K and H-H produces a significant amount of spatial singleton. While more

clusters can be found as ∆ increases from 500m to 1500m, spatial singletons still dominates other segments.

Figure 5 shows examples of segmentation results from AP and SAP for the same area.

Figure 5 shows that AP and SAP produce more meaningful segments compared to K-K and H-H. There

are much less spatial singleton observed, especially at ∆ equals 1000 and 1500m. Figure 5 clearly shows

that AP and SAP are better candidates for our spatial passenger segmentation problem according to the

Criterion 1. Visually, there are little differences between the segmentation results of AP and SAP. We look

further into the differences between AP and SAP in Table 3, where the net similarity and total computation

time of AP, AP-C, SAP-C and SAP at different values of ∆ are presented.
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Table 3: Comparison of net similarity and computation time of AP, AP-C, SAP-C and SAP

Criteria AP AP-C SAP-C SAP

Net similarity at different ∆ (m)

500 3650.84 3650.65 3650.10 3650.81

700 3689.18 3685.17 3688.96 3684.57

900 3716.54 3709.69 3715.51 3714.50

1100 3741.62 3739.22 3737.86 3740.35

1300 3756.29 3751.95 3755.43 3753.19

1500 3765.22 3762.99 3764.91 3764.50

Total computation time (s) 353 237 186 168

Table 3 shows that the four algorithms start very similarly at ∆ equals 500m, where all of them produce a

similar net similarity of approximately 3650. As ∆ increases from 500 to 1500m, AP generally produces the

highest net similarity. However, while AP takes 353 seconds for 6 full implementation as ∆ increases from

500 to 1500m with step σ equals 200m, other algorithms are significantly more efficient, while producing

very close clustering performance. Compared to AP, other algorithms (AP-C, SAP-C and SAP) are 38%,

47% and 52% faster, respectively, while all producing less than 1% lower in net similarity. The difference

between the 4 algorithms are further demonstrated in Figure 6.

Figure 6 shows the progressions in each iterations of AP, AP-C, SAP-C and SAP at different value of

∆. Figure 6 shows that without the Local convergence threshold C, AP usually takes the maximum number

of iteration (500 iterations) to converge. This is due to the numerical oscillation and volatility in the net

similarity progression, even though a very large damping factor (Equation 4 and 5) of 0.9 has been used in

all algorithms. The introduction of parameter C is necessary in our data because of this nature of the data,

and because computational efficiency is also important for our problem. In fact, Table 3 shows that the

introduction of C saves at least 38% of computation time by enabling a faster Local convergence in AP-C,

SAP-C and SAP.

As expected, Figure 6 also shows that there are less numerical oscillation and volatility as ∆ increases.

Adaptation of C (Algorithm 1) enables SAP to converge faster than SAP-C, while maintaining similar net

similarity. Figure 6 shows that while SAP-C takes 130 and 100 iterations to converge when ∆ equals 1000m

and 1500m, SAP only takes 100 and 70 iterations, respectively.

Compared to AP and AP-C, SAP-C and SAP take much less iterations to converge. This is because

SAP-C and SAP carry the Responsibility and a selective part of Availability matrix forward as ∆ increases

to accelerate a Local convergence. Figure 6 shows that as ∆ increases from 500m to 1500m, while AP

and AP-C always start the net similarity progression from approximately 2400, the first iteration in SAP-C
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and SAP has a head-start from the previous step of ∆. In fact, SAP-C and SAP starts the net similarity

progression of ∆ = 1000m from 2800, compared to 2400 in AP and AP-C.

The first case study on an limited sample size shows that AP and SAP are better candidates for spatial

passenger segmentation than K-means and Complete-linkage Hierarchical Agglomerative Clustering. AP,

SAP and their variety AP-C and SAP-C produce very similar clustering performance, measured in the sum

of net similarity between passengers and their exemplars, but SAP takes 52% less in computation time using

the same Windows machine.

5.2. Second case study: a large scale study of transit passengers in New South Wales, Australia

This section describes the process to implement the proposed SAP algorithm on the whole dataset

of 587,791 passengers. We also aim to show several examples of usages for the segmentation results to

demonstrate how this study would be useful for them. The study process for the large-scale case study

follows what has been described in Section 4.

Figure 7 shows the spatial distribution of passenger segments in two different spatial areas of Sydney,

Australia. The first area is Inner South Sydney, an area of high population density and well-serviced public

transport. The second area is Northern Beaches, an area of low population density and limited public

transport options, with only local buses servicing the area. SAP is implemented with ∆ equals 700m.

For visualisation purpose, each segment of passengers is colour-coded according to the mean of each

behavioural features, where Red represents the mean value being larger than 50%, and Green represents the

mean value being smaller than 50%. It is noticeable in Figure 7 that Inner South Sydney has significantly

more public transport passengers than Northern Beaches, due to its high population density and better

transit service. There are significantly more segments of Frequent and Train passengers in Inner South

Sydney than Northern Beaches, while Northern Beaches’ passengers often have to make more transfers than

Inner South Sydney’s passengers. The results show the interplay between supply and demand, where better

supply and higher population density bring more demand. However, Figure 7 also shows the dominance

of Infrequent segments of passengers in both areas, notwithstanding the good public transport service in

Inner South Sydney. In fact, segments which are close to train stations are more likely to be Frequent and

vice versa, suggesting the transit operators to address the needs of passengers at different spatial locations

with different travel patterns. For instance, transit operators may open feeder services to take Infrequent

Train passengers segments to the nearest train station, or provide incentives for them to encourage more

Train usage. SAP enables transit operators to discover these spatial passenger segments, and to find out

the changes in passenger market segments before and after a new policy without a costly passenger survey.

A similar approach can be implemented for Bus Bridging services, which are temporary bus services that

serve Train passengers during a Train disruptions. To limit the resources needed and maximise the Bus

Bridging vehicle’s occupancy, passengers can be asked to walk to the centre points of each spatial passengers
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segment, where they will be served by a Bus Bridging vehicle. Depends on the available resources and the

passengers’ acceptance for a maximum walking distance, a value of ∆ can be chosen. Larger ∆ means the

segments’ spatial sizes are larger, so that less Bus Bridging vehicles are needed, but also longer walking time

for passengers. Figure shows the segments of Train users in the Inner South Sydney area at different values

of ∆. As could be seen in the figure, larger value of ∆ means less spatial passenger segments and less spatial

singleton, but also means longer mean walking distance for passengers.

Another example of a SAP’s benefit on areas of limited public transport supply and demand such as

the Northern Beaches area in Sydney. The idea is to approach the supply-demand interplay from a demand

point of view. Traditional public transport deals with coarsely estimated long-term transit demand and

aims to serve the demand by deterministic supply of fixed routes and timetables. The availability of data-

driven spatial passenger segmentation methods such as SAP may open a more versatile approach to meet the

demand by adapting the transit services to the spatial locations and travel patterns of passengers. Similar to

the above Bus Bridging service example, buses may serve the centre point of each spatial passenger segment.

Large volume and sparse stop-to-stop transit Origin-Destination (OD) demand can now be represented as

segment-to-segment OD. Passengers will walk to the ”virtual stops” at the centre of their spatial segment,

where they will share the same service with other passengers who travel to similar locations, and having

the same mobility requirements. The locations of virtual stops and the planned services can be changed

dynamically to adapt to passengers’ needs using the spatial passenger segmentation results from SAP. While

the exact modelling and implementation of this approach are outside the scope of this paper, Figure 9 gives

an insight into the spatial segments at different values of ∆.

The second case study is about the large-scale implementation of the proposed SAP algorithm on the

whole dataset of NSW, Australia. The case study also shows several examples where we can localise the

segmentation results into specific spatial areas for a number of applications.
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(f) H-H ∆=1500m

Figure 4: Comparison of clustering results: K-K & H-H. Each colour and convex hull represents a spatial passenger segment.

Map data at Google. 20
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Figure 5: Comparison of clustering results: AP & SAP. Each colour and convex hull represents a spatial passenger segment.

Map data at Google. 21
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(d) AP-C ∆=500m
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(e) AP-C ∆=1000m
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(f) AP-C ∆=1500m
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(g) SAP-C ∆=500m
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(h) SAP-C ∆=1000m
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(i) SAP-C ∆=1500m
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(j) SAP ∆=500m
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(k) SAP ∆=1000m
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(l) SAP ∆=1500m

Figure 6: Comparison of net similarity progression.
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(a) Northern Beaches: Frequency of use. Red for Frequent

passengers
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(b) Northern Beaches: Train usage. Red for Train passengers

(c) Inner South: Frequency of use. Red for Frequent passen-

gers

(d) Inner South: Train usage. Red for Train passengers

Figure 7: SAP results on Northern Beaches and Inner South Sydney area. Map data @ Google.
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(a) ∆=700m. Number of segments: 837. Mean walking dis-

tance: 302m

(b) ∆=900m. Number of segments: 803. Mean walking dis-

tance: 403m

(c) ∆=1100m. Number of segments: 774. Mean walking dis-

tance: 473m

Figure 8: Spatial Passenger Segmentation at the Inner South Sydney area. Each colour and convex hull represents a spatial

passenger segment. Map data @ Google.
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(b) ∆=900m.
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(c) ∆=1100m.

Figure 9: Spatial Passenger Segmentation at the Northern Beaches area. Each colour and convex hull represents a spatial

passenger segment. Map data @ Google.
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6. Conclusion

This paper proposes a new algorithm named Spatial Affinity Propagation (SAP) based on the classical

Affinity Propagation algorithm (AP) for large-scale spatial-behavioural transit market segmentation. The

proposed SAP algorithm (1) incorporates both spatial and behavioural features into a comprehensive clus-

tering methodology; and (2) enables large-scale transit market segmentation by a variable maximum spatial

size threshold ∆. The proposed SAP algorithm clusters passengers based on their spatial geodetic coordi-

nates, where passengers from the same segment are located within a walking distance from each other; and

based on their behavioural features, where Frequency of use, Randomness of travel behaviour, Frequency

of Train usage, and Frequency of Transfers are mined from Smart Card AFC data. The algorithm can be

implemented very efficiently with a selective rules for Availability and Responsibility updates; and an adap-

tive convergence criteria at different values of ∆. On our numerical case studies, SAP is 52 % more efficient

than the classical AP algorithm, while does not significantly compromise the clustering performance.

The proposed SAP algorithm will enable transit operators to understand the spatial-behavioural distri-

butions of their customers. Customised and better catered services can be given to transit passengers who

are spatially close to each other and behave similarly. Examples of them include a feeder service that takes

passengers to the nearest transit hubs, Bus-Bridging services during train disruptions, or to adapt a bus

service with dynamic demand.

Due to the limitation of Smart Card data, we used an estimation of passengers’ home location from the

most frequent first stop and the ones in the immediate vicinity instead of the actual home location for each

passenger. Transit operators may be able to implement the proposed SAP algorithm using the actual home

locations collected from their customers. Future developments of this paper include the incorporation of

more spatial and behavioural features. Spatial features may include a regular origin-destination locations

of each passengers. Behavioural features may include travel distance, travel time and other travel choice-

related features. Simple adaptation will also allow this method to be applied to other problems, such as

customer segmentation in banking.
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