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Abstract: It is essential to understand how transit passengers arrive at stops, as it enables transit operators and researchers to
anticipate the number of waiting passengers at stops and their waiting time. However, the literature focuses more on predicting
the total passenger demand, rather than simulating individual passenger arrivals to transit stops. When an arrival process is
required especially in public transport planning and operational control, existing studies often assume a deterministic uniform
arrival or a homogeneous Poisson process to model this passenger arrival process. This study generalises the homogeneous
Poisson process (HPP) to a more general non-HPP (NHPP) in which the arrival rate varies as a function of time. The proposed
collective NHPP (cNHPP) simulates the passenger arrival using less time regions than the HPP, takes less time to compute,
while providing more accurate simulations of passenger arrivals to transit stops. The authors first propose a new time-varying
intensity function of the transit passenger arrival process and then a maximum likelihood estimation method to estimate the
process. A comparison study shows that the proposed cNHPP is capable of capturing the continuous and stochastic fluctuations
of passenger arrivals over time.

1 Introduction
Passenger demand plays an essential role in both long-term
planning and short-term operational control of public transport.
Passenger demand significantly affects transit operations, because
transit vehicles have to stop for passengers boarding and alighting,
which increases the dwell time at stops. The question of modelling
how passengers arrive at a transit stop becomes one of the major
research interests for public transport studies. The number of
passengers who arrived and their arrival times at stops is essential
inputs to estimate passenger waiting time for transit vehicles. The
total or mean waiting time is often used as the main objective
function for public transport planning and operation studies [1–5].

An analytical approach to model the passenger arrival process is
often required in these public transport planning and operation
control studies. Each passenger arrival is modelled as an event,
where researchers are usually interested in the number of arrivals
between two successive transit vehicles. A simulation of the
passenger arrival process is required for this purpose, where an
intensity or arrival rate is estimated. The arrival rate is the number
of passengers who arrived at a transit stop per time unit.

There are generally two approaches to model the passenger
arrivals using the known arrival rate: (i) a deterministic or (ii) a
stochastic point process. First, the deterministic approach assumes
that passengers arrive uniformly at transit stops so that the number
of boarding/arrived passengers is simply the product of the
passenger arrival rate and the time headway between consecutive
vehicles. This approach has been used in many earlier studies such
as Eberlein et al. [1] and Fu et al. [2]. Daganzo [6] and Daganzo
and Pilachowski [7] also use a variation of this approach, where a
dimensionless parameter is used to represent the marginal increase
in transit delay resulting from a unit increase in headway. Second,
the stochastic point process approach assumes that passengers
arrive randomly at stops with a stable arrival rate. In the majority
of existing studies, this stochastic point process is a homogeneous
Poisson process (HPP), which aims to simulate the passenger
arrival times using only the arrival rate and the time interval
between consecutive vehicle arrivals, no matter when the interval
starts. HPP is widely used to model systems with stochastic events,
such as modelling the presence of connected vehicles in traffic [8]
or traffic incidents [9]. An emerging number of existing studies in

public transport have also adopted this stochastic approach, such as
Fu and Yang [10], Toledo et al. [11] and Kieu et al. [12]. There is
considerable evidence that the assumptions of stochastic HPP
processes for passenger arrivals are reasonable for high-frequency
services, such as those with scheduled headway between 10 and
15 min [4]. At longer headways, there is another less popular line
of research regarding passengers who time their arrivals with the
schedule and service reliability [13, 14]. In this paper, we assume
that passengers do not consult the schedule prior to arrival at transit
stops, thus the use of a stochastic point process such as HPP
remains valid.

Existing HPP models in the literature assume a stable passenger
arrival rate or intensity that does not change over time. However, it
is clear that the passenger arrival rate varies with time. The
morning and afternoon peak periods should have much higher
arrival rates compared to off-peak periods. The arrival rate also
changes gradually from low to high and from increasing to
decreasing. A common approach to include time into consideration
is to define exogenous time regions. In each region, the passenger
arrival rate is then constant, and a different HPP can be applied to
each region. This approach has limited accuracy because the
passenger arrival process is not fully continuous time-dependent,
but rather multiple independent HPP superimposed [15]. This
approach can be seen as a discretisation of the continuous arrival
rate into multiple discrete constant arrival rates. However, because
the arrival rate in each region is still constant, the accuracy of this
method is limited to the number of time regions we can fit and
combine. Non-HPP (NHPP), which allows the arrival rate to be
continuous time-dependent, is a substantial advance from the HPP
in terms of versatility and accuracy to model the passenger arrival
process. However, not only is the implementation of NHPP
complex, it is still not possible for a single NHPP intensity function
to model the passenger arrival process of a whole day. It is still
necessary to use a system of multiple time regions to model the
passenger arrival process, but we can use an NHPP in each time
region. This approach would require less time regions, while
potentially providing a more versatile approach to model the
passenger arrival process.

This paper proposes an NHPP to model the stochastic and time-
dependent passenger arrival process at transit stops. We relax the
assumption in the classical case where the rate of arrivals of
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passenger demand is constant over time. We inherently model the
rate of arrival of passengers as a continuous function of time, t.
This would account for the fact that there are more passengers
arriving at a certain time period (say morning), than others (say
midnight). We present an insightful framework to model time-
dependent passenger demand and propose algorithms to perform a
collective simulation of passenger arrival rate on multiple time
regions and (c) simulate the NHPP model for validation and
comparison with other approaches. The inference and simulation of
the proposed NHPP model will use a two-day record Smart Card
dataset of Sydney, Australia, where we use the first day to train the
model, and the second day for testing. The proposed NHPP model
will be applied to the whole day from 0:00 to midnight. We also
explicitly consider the differences between different time-of-the-
day by a series of change points, where the passenger arrival rate is
changed. We call this approach the collective NHPP or cNHPP.
The contributions of this paper are twofold: (a) we propose a new
intensity function for modelling the passenger arrival process to
transit stops, and (b) we propose a procedure for identifying change
points so that a continuous time-varying passenger arrival process
can be simulated.

The remaining of this paper includes a representation of HPP
and NHPP, the proposed inference method for collective NHPP and
a numerical experiment.

2 Fundamental representation of the arrival
process
In this section, we briefly recap the fundamentals of arrival
process and Poisson process, which would be used to model the
process of passengers arriving at transit stops. The following
section serves as the building block for realistic modelling of
passenger arrival process to be extended in later sections, and to
include periodicities in demands.

2.1 Arrival process and HPP

An arrival process is a sequence of inter-arrival times at which
each event happens, which we shall denote by t1, t2, …. For
example, t1 represents the time when passenger 1 arrives at a
transit stop, t2, represents the time the following passenger arrives
and so on. tk can usually be interpreted as the time of occurrence of
the kth event, in this case – the kth arrival. In this paper, we refer to
ti as arrival times. ti is a non-negative random variable, satisfying
0 < t1 < t2 < ⋯, where ti<ti+1.

Fig. 1 illustrates the arrival process, where ti is arrival time and
Qi is the inter-arrival time. Qi can be interpreted as follows: the
first passenger arrives at time t1, the second arrives at Q1 after the
first and so on. N(t) can be understood as a counting process of the
arrival process, where the number of passengers arrived within a
time period can be retrieved if the arrival process is modelled. This
is useful for transit operations and management, where transit
operators can estimate the number of waiting passengers at a transit
stop given the forecasted time gap between two consecutive transit
vehicles. 

The simplest class of arrival process is the HPP. It can be
defined as follows:
 

Definition 1: (HPP): Let (Qk)k ≥ 1 be a sequence of independent
and identically distributed exponential random variables with
constant parameter λ and event times tn = ∑k = 1

n Qi. The process
Nt, t ≥ 0  defined by Nt := ∑k ≥ 1 1{t ≥ tk} is called a Poisson process

with intensity λ.
Where 1 ⋅  is the indicator function that takes the value 1 when

the condition is true, 0 otherwise. We can see that N0 = 0. Nt is
piecewise constant and has jump size of 1 at the event times ti. One
can show that it means the following proposition [16].
 

Proposition 1: (Ross, 1995, p.64, Proposition 2.2.1): The inter-
arrival times Q(i) with k = 1, 2,… of an HPP with rate λ > 0 are
independent identically distributed exponential random variables
with mean 1/λ.

The proof of this proposition can be found in [16]. Assume that
r time units have elapsed and during this period no events have
arrived, i.e. there are no events during the time interval [0, r]. The
probability that we will have to wait for a further t time units given
by

ℙ(Q > t + r |Q > r) = ℙ(Q > t + r, Q > r)
ℙ(Q > r)

= ℙ(Q > t + r)
ℙ(Q > r) = exp −λ(t + r)

exp −λr
= exp −λt = ℙ(Q > t) .

(1)

Equation (1) is said to have no memory and it is a special property
of the Poisson process. That is, the likelihood and chance to wait
an additional t time units after already having waited m time units
is the same as the probability of having to wait t time units when
starting at time 0. Putting it differently, if one interprets Q as the
time of arrival of an event where Q follows an exponential
distribution, the distribution of Q − m given Q > m is the same as
the distribution of Q itself. Therefore, we can naturally come up
with the following algorithm to simulate the passenger arrival
times ti in an HPP by generating the inter-arrival times Qi and
taking the sum ti = ∑k = 1

max Qk. The algorithm is described in Fig. 2. 
The HPP is therefore stochastic and probabilistic, but with a

constant arrival rate λ.

2.2 Non-HPP

The HPP, as we defined it so far, is simply characterised by a
constant arrival rate λ. It is equivalent to an assumption, e.g. that
public transport passengers arrival rate to stops is the same
regardless of the time being midnight or peak periods. It is more
useful to extend the Poisson process to a more general arrival
process in which the arrival rate varies as a function of time. Note
that the intensity usually depends on the arrival time, not just on
the inter-arrival time. We can define this type of process as a non-
homogeneous Poisson process (NHPP).
 

Fig. 1  Illustration of the arrival process
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Definition 2: The point process N is said to be an NHPP with
intensity function λ(t) ≥ 0 t ≥ 0; if

ℙ(Nt + h = n + m | Nt = n) = λ(t)h + o(h) if m = 1,
ℙ(Nt + h = n + m | Nt = n) = o(h) if m > 1,
ℙ(Nt + h = n + m | Nt = n) = 1 − λ(t)h + o(h) if m = 0.

(2)

The NHPP is a generation of HPP where the intensity λ is now not
a constant, but a function of time λ(t). NHPP, in general, would be
a better candidate for the modelling passenger arrival process to
transit stops, because we can vary the passenger arrival rate as a
function of time, e.g. the peak periods should have higher arrival
rates than the off-peak period. Analogously to Proposition 1, the
following proposition can be obtained [17].
 

Proposition 2: If the arrival process N be an NHPP with
intensity function λ(t), then N(t) follows a Poisson distribution with
a parameter ∫0

tλudu, i.e.

ℙ(Nt = n) = 1
n!exp −∫

0

t
λudu −∫

0

t
λudu

n
(3)

The proof for Proposition 2 can be found in [17]. Let n = 0 we find
the probability of no arrival within the interval [a, b], which
determines the law of occurrence for the next arrival

ℙ(N(a, b] = 0) = exp −∫
a

b
λudu (4)

In a simple arrival process, arrivals occur one by one and by
checking the condition in (4), the arrivals can be simulated
sequentially. The simulation procedure in Algorithm 2 (see Fig. 3)
follows this idea and is often referred as Lewis’ thinning algorithm
[17]. 

3 Methodology
We have now described some of the theory of arrival process that is
suitable to model the stochastic and time-varying passenger
demand. This section proposes a parametric form for the rate of
demand for passengers to be used in an NHPP model.

3.1 Proposed time-varying arrival rate (intensity) function

Equation (5) shows the formulation of the time-varying arrival rate
λ(t) of the proposed cNHPP.

λt = pcptp − 1 + ε, (5)

where c>0 and p ∈ R. The parameter ε is usually taken to be fixed
and acts as a parameter such that the rate never goes negative
(bounded away from zero), since a negative rate of demand is
nonsensical. Fig. 4 shows a plot of this intensity. It can be easily
noted that this is a generalisation of the HPP, where the rate can be
constant (similar to HPP) or varies over time. This function is
versatile for several reasons. When the parameter p = 1, it reduces
to a constant and we know from above that this specifies the
parameter for the exponential random variables. If this is respected
then the data follows a Poisson process. If on the other hand, in the
case where p<1, this gives a decreasing curve (see Fig. 5). We
interpret this as the rate of demand decreasing. Finally, our choice
of intensity function can also handle the case when p>1 – this
corresponds to an increasing rate of demand. We summarise the
following description below:

• it reduces to a constant when p = 1, and hence is able to recover
Poisson process should the data respects this,

• when p<1, the rate of demand is decreasing,
• when p>1, the rate of demand is increasing.

3.2 Parameter estimation

Recall that if N is an NHPP equipped with an intensity function
λ(t), then Nt follows a Poisson distribution with parameter ∫0

tλudu.
Exploiting this definition together with the availability of demand
from Smart Card data, we are interested in performing inference
over the set of parameters of Θ := (c, p) in our chosen intensity
function as in (5). To this end, we use the maximum likelihood
estimation (MLE) method. The MLE begins with writing down an
expression known as the likelihood function. Since the logarithm is
a monotonic increasing function, we can equivalently write down
the log of this likelihood function, which we denote henceforth as
ℒ. Roughly speaking, the likelihood of a set of observed data is
the probability of obtaining that particular set of data, given the
chosen intensity model, and in our case, it is defined in (5).
Observe that the function ℒ contains the unknown model
parameters. The values of these parameters that maximise the
sample likelihood are known as the maximum likelihood estimates
(MLEs).

Smart Card data gives the observed samples
ℋ − = t1, t2, …, tn  where ti represents the arrival time of a
passenger at timestamp i. We write the log-likelihood ℒ of the
Poisson distribution with a ∫0

tλudu parameter where λ follows that
of (5):

Fig. 2  Algorithm 1: Simulation of an HPP with intensity λ on [0, T]
 

Fig. 3  Algorithm 2: Simulation of a NHPP with intensity λ(t) on [0, T]
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ℒ(c, p |ℋ) = − n ⋅ ∫
0

λudu
+ ∫

0

λudu
⋅ ∑

i = 1

n
xi . (6)

We find the optimal c and p by maximising the log-likelihood, i.e.

arg max
c, p

ℒ(c, p |ℋ) . (7)

3.3 Collective NHPP

Despite the proposed intensity function λ(t) (5) being a very
flexible function, there is still a major challenge in the
implementation of this function to model the passenger arrival
process of the whole day. Equation (5) can only describe a convex
upward or downward passenger arrival rate. It cannot be used to
describe an arrival pattern that has a change point, i.e. where the
arrival process change in the trend from upward to downward, or

vice versa. For instance, the arrival rate of public transport
passengers at transit stops may keep increasing from midnight until
the middle of the morning peak period (e.g. 8 AM), then drop until
increasing again at the start of the afternoon peak period. No single
parametric model would be able to fit the arrival process with a
‘twist’ between increasing and decreasing the arrival rate. The
whole-day data should be modelled using several discrete intensity
function λ(t), where each function explains a distinct time region.
The change points are considered as the connection points to merge
these individual time regions into a complete framework for
cNHPP. We propose the following procedure to describe the
change point determination process:

• Step 1: Plot the cumulative recurrences versus timestamps of
passenger arrivals to visually identify the number of change
points required K. This step requires a graph-based identification
of the number of changes in the passenger arrival rate pattern
from upward to downward, and vice versa.

Fig. 4  Proposed intensity function λ against time
 

Fig. 5  Cumulative recurrences of passenger arrivals at train stations
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• Step 2: For each candidate change point Ki, define a range
Ri

min, Ri
max  such that Ki ∈ Ri

min, Ri
max |K j ∉ Ri

min, Ri
max , i ≠ j.

• Step 3: Randomly initialise the starting point for Ki in
Ri

min, Ri
max .

• Step 4: Iteratively maximise the sum of log-likelihood
ℒ(c, p |ℋ) from each time region Ri

min, Ki  and Ki, Ri
max

against the value Ki. This is equivalent to solving the maximum
likelihood optimisation problem in (7) using multiple values of
Ki, until convergence. We adopt the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm to iteratively solve this
problem [18].

• Step 5: Repeat steps 2 to 4 until the last change point.

Please note the cumulative recurrence plot is the plot of the
cumulative count of passenger arrivals at a train station versus their
timestamps of arrival. We shall see an observed cumulative
recurrence plot in the next section.

4 Dataset
In order to have the passenger arrival data Ti that will be used for
modelling, this paper uses two days of Smart Card data from
Sydney, Australia. The data consists of the timestamps when a
passenger arrives at train stations in Sydney. We focus on
modelling the passenger arrival process at six popular train
stations. The stations have been chosen with two major criteria: (a)
they should be a busy train station with many high frequency train
lines, and (b) there should not be many other activities within the
train station so that there are few other activities such as shopping
after entering the station. Fig. 6 illustrates the location of six
chosen train stations used for the case study. The stations (from left
to right and then top to bottom) are Lidcombe, Strath-field,
Ashfield, Redfern, Wolli Creek and Hurstville Station. 

4.1 Evidence of departure from HPP

Fig. 7 shows the one-dimension kernel density estimation using
passenger arrival data Ti of the six stations in the case study. It can
be noted that the passenger demand varies over time. The morning
peak and afternoon peak periods show significantly higher demand
than other time periods. Recall that the HPP assumes that the

passenger arrival rate is constant in time. Fig. 7 clearly show a
dynamic time-dependent demand pattern that should be addressed
by a time-varying function of demand. 

To further investigate the observed passenger arrival data, Fig. 5
demonstrates the cumulative recurrences of passenger arrival
throughout a day. Fig. 5 shows another sign of the time-varying
passenger arrival rate because if the arrival rate was constant, we
should have seen a straight line for the cumulative recurrence
figure. Figs. 5 and 7 give evidence that the rate of passenger
demand changes over time. The arrival rate is clearly not
homogeneous, as it is not constant over the period of observation.

5 Numerical experiments
This section shows the experimental results and compares the
results from cNHPP with the common approaches in the literature.
To compare our proposed process with other common methods for
modelling the passenger arrival process in the literature, we also
develop two other common processes in the literature of public
transport:

• Uniform arrival: The passenger arrival process is deterministic
and uniformly distributed.

• Homogeneous Poisson arrival (HPP): The passenger arrival
process is stochastic with a stable intensity function that does
not change over time. The parameters are estimated by
averaging the total number of passengers over the study period.

5.1 Comparison of result for a short time period

We first consider the case where only a short time period is
considered, so no change points are required. We estimate the
parameters of the proposed cNHPP by solving the maximum
likelihood optimisation problem in (7) to find (c, p) using observed
Smart Card data. Similar to the previous section, the BFGS
algorithm is employed to iteratively solve this problem [18]. The
HPP is estimated similarly using a simple intensity function λ = D
and then employ MLE to find D.

After the parameters for HPP and cNHPP are estimated, we
then simulate the passenger arrivals using Algorithms 1 and 2
(Figs. 2 and 3). The simulation for uniform arrival process can be
easily done by generating even arrivals using the estimated arrival
rate. Note that the simulation for uniform arrival process is

Fig. 6  Train stations for the case study in Sydney, NSW, Australia. Map data from OpenStreetMap
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deterministic, i.e. it generates the same arrival times every time we
simulate. Fig. 8 compares the kernel density estimation of the
simulations from the uniform arrival process, HPP and cNHPP
over four 30-minute intervals compared to the observed arrival data
to one of the train stations in the case study. 

The uniform arrival process only provides a deterministic
distribution, where passengers uniformly arrive. HPP provides very
similar results to the uniform arrival process, but with some
stochasticity. This result shows that HPP is actually not much
different from a simple assumption of uniform arrival. It also
suggests that HPP is not good enough for modelling and simulating

Fig. 7  Passenger demand at the six train stations in the case study
 

Fig. 8  Comparison of simulation results
(a) 7:00–7:30 AM, (b) 7:30–8:00 AM, (c) 8:30–9:00 AM, (d) 9:00–9:30 AM
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the passenger arrival process unless there are many change points
considered. On the other hand, the probability density function of
simulations from the proposed cNHPP shows a very good fit with
the actual arrival data. As time increases from 7:00 to 7:30 AM,
cNHPP captures the fact that passengers are arriving more at transit
stops as time passes. At the second interval in Fig. 8b, the arrival
rate hits the plateau, before the reduction in Figs. 8c and d. The
results show that cNHPP provides a versatile and accurate
simulation of the passenger arrival process to transit stops.

5.2 Comparison of results for a day

Recall that Figs. 5 and 7 show that the arrival process seems to
have many stages when looking at the passenger arrival density for
a whole day, and suggest the use of several change points. Take
Refern station as an example, Fig. 9 shows the evidence that the
cumulative recurrence plot is not ‘smooth’ and two change points
should be considered. We can also see similar hints for other
stations in Fig. 5. 

Therefore, we add two or three change points Ki for each station
when estimating the parameters for cNHPP. It means that there are
three NHPP models using the intensity function in (5) developed
for distinct time regions: 0, K1 , K1, K2 , …, until [KCP, 1440]
where 0 and 1440 are the first and last minutes of a day and CP is
the number of change points. We estimate the parameters of these
cNHPP models according to the MLE method described in Section
4.2.

Conversely, the HPP requires many more change points because
the model can only model a linear intensity function and fails to
model a convex function. It is necessary to add many more change
points compared to cNHPP to emulate a continuous time-varying
arrival rate when a whole day is considered. It is possible to model
any time-varying passenger arrival process using HPP with many
change points, but the computation cost would be too high for a
system with many events such as our passenger arrival data.
Therefore, to implement a piecewise HPP, we add a new change
point every 120 min. Fig. 10 shows the results of cNHPP and HPP
using 3 and 12 change points, respectively. The uniform arrival is
very similar to HPP and is dropped out for visualisation purposes. 

The vertical dotted line in Fig. 10 shows the location of
cNHPP's change points for the six train stations, where the time is
in minutes. As can be seen in the figure, there are three stations
with two change points and the remaining have three change
points. Fig. 10 also shows that the locations of change points are
relatively similar across the stations. The first change point defines
the first time region from midnight (time 0 min) until the end of the
morning peak periods (time around 500–570 min). This first time
region explains the constant arrival in the early morning, the sharp
increase in the morning peak period, and the decrease after the
morning peak time. The last change point defines the last time
region from the start of the afternoon peak period (time around
950–1100 min, which is equivalent to around 4 PM). This time
region explains the increase and decrease in passenger demand
prior to and after the afternoon peak period. In the middle of these
two change points, there may be another one if needed. Fig. 10

provides a suggestion to find the number of required change points
and their prospective locations prior to applying the procedure in
Section 3.

The HPP model is always estimated with 12 change points
because it fails to model the increasing and decreasing trends in
passenger arrival rate. Fig. 10 shows that while cNHPP fits well
with the curves in cumulative recurrence plots, HPP often cut
across the curves and discretises the cumulative recurrence plots.
HPP also leaves a few blank time regions, such as the early time
periods in Ashfield and Wolli Creek stations because their time
regions are relatively small (120 min), so that there may be not
enough data points for fitting a Poisson process. This issue is even
more severe if transit operators want to implement HPP in every
station, because some stations may have very limited demand. On
the other hand, cNHPP only requires two to three change points,
which means that the time region is generally large enough to
contain sufficient data points.

The parameters for cNHPP and HPP are inferred using the
Smart Card data of 30 August 2017. We then use the estimated
parameters of cNHPP and HPP to predict individual passenger
arrival times to the six stations on the next day 31 August 2017.
Given the total number of passengers who arrived at each station
during each time region, we use Algorithms 1 and 2 (Figs. 2 and 3)
to simulate the individual passenger arrivals for exactly the same
number of passengers on 31 August 2017. The simulated arrival
data from cNHPP and HPP is then compared to the observed data
from the Smart Card data. Mean absolute percentage error (MAPE)
and computation time in minutes are used as the criteria for
comparison. The MAPE is a well-known algorithm for calculating
the percentage difference between observed and predicted values.
It is calculated using the following equation:

MAPE = 100
n ∑

t = 1

n
|OBSt − SIMt

OBSt
| (8)

Where OBSt and SIMt are observed and simulated arrival times,
respectively, and n is the total number of passengers who arrived at
the studied train station. Table 1 shows the prediction error
(MAPE) and the computation time of the proposed cNHPP and
HPP. The parameter estimation of both cNHPP and HPP has been
implemented in R language using the same MacBook Pro 2016. It
is clear that cNHPP outperforms HPP in both MAPE and
computation time. cNHPP is ∼42% better than HPP in terms of
MAPE while costing 32% less in computation time. This is
because cNHPP can fit convex curves, while HPP has to rely on
fitting many discrete time regions to approximate a continuous
passenger arrival process. Recall that the prediction performance of
HPP can be improved by increasing the number of change points
so that it would provide a better approximation of the continuous
arrival process. However, this approach would even further
increase the computation time. Therefore, it is clear that cNHPP is
superior to HPP in both simulation performance and computation
time. 

6 Conclusion
Passenger arrival process is essential in public transport planning
and operational control to anticipate the number of waiting
passengers at stops and their waiting times. However, literature on
public transport focuses more on estimating the total passenger
demand, rather than simulating the individual passenger arrival
process. When a passenger arrival process is required, existing
studies in literature often adopt the rather simplistic uniform arrival
process and HPP approaches. While being simple to implement,
these approaches fail to truly represent the continuous arrival
process. They often discretise the continuous arrival process into
many discrete time regions where in each time region the arrival
rate is constant.

This paper proposes an NHPP to simulate individual passenger
arrivals to transit stops. The proposed model simulates the
continuous arrival process using less discrete time regions than the
HPP and also costs less in terms of computation time. In order to
do so, we propose a new time-varying intensity function of transit

Fig. 9  Cumulative recurrences of passenger arrivals at train stations
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passenger arrival rate, which is robust and flexible. We also
propose an MLE method to estimate the parameters for this
intensity function using the Smart Card data of Sydney, NSW,
Australia. The comparison using the next day data shows that the
proposed cNHPP is able to accurately capture the dynamic
fluctuations of passenger arrivals over time.

One of the limitations of the current approach is that the
consideration of change points still requires visual examination of

the cumulative recurrence plot to find the possible number of
change points and their boundaries. Future studies should solve this
problem using an adaptive method to automatically identify the
number of change points and their locations. In the meantime, this
study is helpful for both transit operators and researchers in public
transport planning and operational control.

Fig. 10  Comparison of simulation results
 

Table 1 Comparison of MAPE and computation time between cNHPP and HPP
Stations MAPE, % Computation time, min

cNHPP HPP cNHPP HPP
Redfern 9.81 16.96 6.34 9.22
Ashfield 10.74 17.38 3.63 5.17
Strathfield 10.82 16.42 6.17 8.97
Lidcombe 11.57 17.24 3.76 5.24
Wolli Creek 10.36 16.25 2.04 3.22
Hurstville 9.29 16.33 3.89 5.52
Bold values indicate the best performance.
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