
Emerging Technologies, Data, and Information

Transportation Research Record
2019, Vol. 2673(4) 145–157
� National Academy of Sciences:
Transportation Research Board 2019
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0361198119838508
journals.sagepub.com/home/trr

Deep Learning System for Travel Speed
Predictions on Multiple Arterial Road
Segments

Hoang Nguyen1, Christopher Bentley1, Le Minh Kieu1,
Yushuai Fu1, and Chen Cai1

Abstract
Accurate travel speed prediction is a critical tool for incidence response management. The complex dynamics of transport
systems render model-based prediction extremely challenging. However, the large amounts of available vehicle speed data
contain the complex interdependencies of the target travel speed; the data itself can be used to generate accurate predictions
using deep learning methods. In this work, a deep learning methodology involving feature generation, model development,
and model deployment is presented. The authors demonstrate the high performance of deep learning methods (relative to
more traditional benchmarks) in predicting travel speeds from 5–30 min in advance, for a challenging arterial road network.
In this study, different deep learning architectures that exploit both spatial and temporal information for several time frames
are compared and analyzed. Finally, the authors demonstrate the integration of their deep learning method into a visualization
system that can be directly applied for vehicle speed prediction in real time. The model-selection analysis and data-to-
visualization framework in this manuscript provide a step towards decision support for incident management; for practical
implementation, the predictive power of deep learning models under incident conditions should continue to be investigated
and improved.

At Transport Management Centers (TMCs), the opera-
tors have to monitor traffic conditions and process inci-
dents in a very large metropolitan area. Their main tasks
include continuous observation of traffic conditions
using CCTV to identify any delay or accident and then
decide appropriate plans to clear the incidents on time. A
real-time traffic-condition monitoring and prediction sys-
tem is expected to generate early warnings to operators
for abnormal traffic patterns, to facilitate better planning
to respond to incidents and reduce congestion. The traffic
condition on a road segment is usually evaluated using
the current travel speed. The New South Wales (NSW)
TMC and the research organization Data61 in Sydney
have collaborated to develop a system to efficiently pre-
dict travel speeds for multiple road segments in an area.
Many previous methods and systems for travel speed/
travel time predictions mainly focused on single-road
motorway traffic data without the need to consider traf-
fic on connected or nearby roads (1–6). In this paper, a
system based on deep neural networks to predict and
visualize vehicle speeds on multiple arterial road seg-
ments is presented. This system is able to consider traffic
conditions on connected or related road segments and

forecast travel speeds for multiple roads in the area from
5–30 min ahead. Furthermore, this approach is not lim-
ited to freeway roads but is applicable to any arterial
road networks where travel speed data is available. Note
that the predictive models incorporated into this system
are effective under regular traffic conditions, as evaluated
in this work. As the models are evaluated and extended
for higher performance under incident conditions, these
extensions can also be integrated into the prediction and
visualization system presented here.

In this work, the literature related to the proposed
model is first reviewed. The deep learning methodology
is then introduced, which includes the preparation of the
data, the elements of the deep learning model, and
model integration approach for real traffic systems.
Subsequently, vehicle prediction results for deep learning
and traditional vehicle speed prediction approaches are
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presented. Finally, the effective application of the pro-
posed prediction scheme is illustrated using a visualiza-
tion system and its implementation in real-world traffic
management is discussed. This implementation could be
directly applied to identify abnormal traffic patterns by
examining the difference between predictions (trained
under regular conditions) and the actual state of the
traffic.

Related Work

Short-term travel speed prediction has been an active
topic in the literature; for reviews of data-driven
approaches see Oh et al. and Vlahogianni et al. (6, 7).
The existing approaches can be divided into parametric
and non-parametric models.

Parametric models in short-term travel speed predic-
tion aim to find a parametric formulation between
known variables such as the previous vehicle speed on a
segment, and the target variable such as the predicted
speed on the given segment. The ARIMA model (8) is a
linear function of past observations and random error
terms, which has been widely applied because of its sim-
plicity and good performance in forecasting linear and
stationary time series. Seasonality variables have also
been included in an extension of the ARIMA model
(SARIMA) (9), where the authors forecast the travel
time using the bluetooth technology on arterials in
Brisbane. However, both ARIMA and SARIMA assume
linear relationships between time-lagged variables, and
they may thus fail to capture the complexity of the
intrinsically nonlinear travel speed dependencies. Apart
from the popular ARIMA-based models, other para-
metric approaches to short-term travel speed prediction
include linear regression and ridge regression (10, 11).
Although the parametric approaches are highly scalable
and transferable, they often require an assumption of the
distribution of data, for example, the normal distribution
in ARIMA.

Non-parametric models have been a popular emer-
ging approach for short-term travel speed prediction.
Unlike parametric models, non-parametric models do
not require any assumptions about the distribution of
data. There are several methods, such as Gaussian pro-
cess, k-nearest neighbor and support vector regression
(1, 12, 13). Neural-network-based methods are also
applied widely in forecasting travel speed or travel time
(14–17).

Deep learning is a recent non-parametric neural-net-
work-based approach to short-term speed prediction,
which attempts to model the complex nature of traffic
data. Traffic flow prediction has been performed using a
variety of deep learning architectures (see Ali and
Mahmood (18) for a review). The variety of architectures

applied, such as autoencoders and deep belief networks
(19–21), reflects the different information that can be
included in the input data, as well as different approaches
to help the artificial neural network learn the desired
mapping from input to output.

Predictive networks exploit temporal information in
some form, since the traffic volume or speed at a given
time is strongly correlated with that just a few minutes
later, and longer periodic trends (e.g., peak-hour beha-
vior) are also evident in traffic data. For instance, the
data can be pre-processed to include temporal informa-
tion as input to a simple feed-forward neural network, as
in Polson and Sokolov (22). Alternately, recurrent neural
networks (RNNs) can learn to process the time-sequence
data themselves. RNNs were designed to learn temporal
correlations from sequences of data and have been
applied to traffic flow prediction in several studies (23–
27). Long short-term memory (LSTM) units are a widely
applied (18) element of RNNs that help in training a net-
work to learn correlations across many timesteps (28).

Additionally, road networks are made up of intercon-
nected road segments that often have strong spatial cor-
relations in traffic volumes and speed. Where data from
different road segments is available, convolutional neural
networks (CNNs) are promising, as the state-of-the-art
approach for many spatial data processing tasks such as
image classification (29). CNNs have been successfully
applied to exploit the spatial road network information
in (24, 27, 30) In fact, in Wang et al. (24) and Wu et al.
(27), a combination of a convolutional neural network
and recurrent neural network were applied to predict the
traffic speed and volume, respectively.

In this work, different deep learning architectures to
the vehicle speed prediction problem for an arterial road
network will be applied. As in previous work, input data
was collected from multiple road segments across time
which have both spatial and temporal correlations.
Unlike in previous work, the authors compare the per-
formance of different architectures for different predic-
tion windows (from 5–30 min ahead). Although the
proposed architectures are known and have each been
applied for prediction within transportation science, our
comparative analysis provides a foundation for future
predictive work in selecting appropriate deep network
architectures for short- and long-time predictions. The
conclusions about which elements of different architec-
tures are effective for our spatio–temporal input data are
given, while noting that systematic architecture optimiza-
tion (for instance over the number of hidden layers, and
nodes contained therein) should be performed before
stronger conclusions are formed. In the results, the deep
learning architectures demonstrate higher performance
than traditional prediction methods for all prediction
windows for the Sydney road network.
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Deep Learning Methodology

The proposed deep learning methodology to predict
travel speeds for multiple road segments is presented in
this section. There are three main components: feature
generation, the multivariate deep learning model devel-
opment, and model deployment.

Feature Generation

Figure 1 illustrates the data processing and feature gener-
ation step. Firstly, the area of interest is identified and
road segments with available travel speeds are included.
The available data includes spatial data from multiple
road segments, and temporal data for each segment. The
travel speed data arrives in time-series format, before
being processed and transformed into sequential matrices
so that the model can learn the spatio–temporal interde-
pendencies of the road segments. As a consequence, the
correlations in travel speeds among different road seg-
ments are utilized.

Let ~y be the time series of vehicle speeds for a target
segment; the model will predict entries of ~y ahead of
time. Here y(t) is the target segment’s average travel speed
for the time interval (t � 1, t�, and t 2 f1, 2, :::, ng where n

is the total number of time intervals in the dataset. At
time t, the target travel speed to be predicted for the fol-
lowing timestep is y(t + 1). A ‘‘lookback’’ window of size D

is defined where the model will use the travel speed data
of the last D intervals as input for the predictive model.
For instance, if D= 5, the input vector will include
½y(t�5), y(t�4), :::, y(t�1), y(t)�. The proposed model also uses
D intervals of nearby road segments which are spatially

related time series as inputs. For example, when forecast-
ing travel speed for a single road segment within 15 road
segments in the investigated network (Figure 1), the
model also uses data from all other 14 nearby segments
as input. These time series are denoted by ~xd , where
d = 1, 2, :::,D are indices that label particular road seg-
ments. The illustration of ~xd is presented in Figure 1 as
Multivariate Time-Series Travel Speed. Our input vector
X(t) (at time t) includes each road segment with the look-
back window D, which can be expressed in vector form as

X(t)= ½x(t�D)
1 , :::, , x(t)1 , x

(t�D)
2 , :::, , x(t)2 , :::, x

(t�D)
D , :::, , x(t)D , y(t�D), :::, y(t)�:

ð1Þ

Alternately, the input can be expressed explicitly in a
sequence, as time-incremented rows of a matrix as

X(t)=
x
(t�D)
1 x

(t�D)
2 ::: x

(t�D)
D y(t�D)

::: ::: ::: ::: :::
x
(t)
1 x

(t)
2 ::: x

(t)
D y(t)

2
4

3
5: ð2Þ

All features were scaled to the range [0, 1] before being
passed to the deep learning model.

Deep Learning Model Development

This section presents the design and development of dif-
ferent deep learning architectures for multivariate travel
speed predictions. Different deep learning methods and
supporting layers (e.g., dropout) are included in our
experiments.

First, some neural network terminology that is neces-
sary to discuss different approaches will be introduced

Figure 1. Feature generation process.
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here. More detail and motivation can be found in various
reviews, such as (31–33). Neural networks are composed
of nodes (or artificial neurons) that are connected by
edges. Nodes are typically organized in layers, such that
the network input is represented by the input layer and
the information flows to subsequent layers through the
edges. Intermediate layers are known as hidden layers,
which pass the information finally to the output layer.
The input for a node j (beyond the input layer) is given
by a weighted sum of outputs from nodes connected to j.
An activation function then acts on each node’s input.
These basic building blocks are employed to construct
different types of processing layers, and several such
approaches are described in the following sections.

Convolutional Neural Network. CNNs, which are widely
applied to process images, speech, and time series, were
first introduced by LeCun et al. (34). In a modern deep
learning architecture, CNN models usually include one
or more convolutional layers with nonlinear activation
functions and one or more fully connected (or dense)
layers. Convolutional layers use spatially restricted con-
nections in a 1-D or 2-D block that have fixed connec-
tion weights. These blocks ‘‘slide’’ across the previous
layer to compute inputs to the subsequent layer. Each
convolutional layer often comes with a sub-sampling
(pooling) layer that reduces the size of the data represen-
tation, hence reducing the computational requirements
as well as minimizing the likelihood of over-fitting (35).
This pooling operation is performed by sliding an input
window across a given layer, and aggregating the values
within the window to one single value. This aggregation
is often by taking the maximum (Max Pooling). The
CNN structure is optionally followed by dense layers,
which involve edges from each node in the previous layer
to every node in the subsequent layer. These dense layers
are similar to standard multilayer neural networks (36).
Figure 2 illustrates a CNN architecture with two

convolutional layers and two sub-sampling (Max
Pooling) layers followed by a dense (fully connected)
layer. The input layer is presented by sequential feature
matrices as described above.

The CNN architecture was originally designed to
exploit the 2-D structure of an input image for image
processing purposes. This same design can be utilized to
treat correlations between travel speeds of multiple
related road segments. Since the input includes a spatial
dimension and a time dimension (through the lookback
window), the convolution could be performed over just
the spatial information (1-D convolution) or both dimen-
sions (2-D convolution). A CNN model is capable of
learning sequences and capturing the spatial dependency
of the dataset (37).

Long Short-Term Memory. One major disadvantage of tra-
ditional (feed-forward) neural networks in learning time-
series patterns is that there is no direct dependency
between successive timesteps. LSTM units were proposed
(28) to learn temporal correlations with long-term depen-
dencies. These LSTM units act as a ‘‘memory’’ to store
information. They include nodes with a self-connection
along a sequence (i.e., connecting the network across
timesteps), along with some additional computation
within the unit, and additional unit inputs, and associ-
ated weights that must be trained (28, 38). These addi-
tional inputs are used as ‘‘context’’ for the effective
memory inside the LSTM unit, to control the computa-
tion (e.g., the internal state/memory can be written to,
preserved, or forget information) as a function of the
input. Figure 3 illustrates a standard LSTM, unrolled in
time (explicitly represented across different timesteps).
The propagation of information across time is repre-
sented in Figure 3 by the connection line (horizontal,
near the top of the diagram) running through the entire
architecture. The output of an LSTM layer depends on
the inputs at all previous times.

Figure 2. An example of CNN network for multivariate travel speed prediction.
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LSTM units were specially designed to capture long-
term dependencies, however they lack the analytical
power of CNNs for spatial dependencies in the travel
speed dataset.

Dropout Layers. In deep learning architectures, the more
complexity the network has (e.g., more layers or nodes),
the more prone it is to over-fitting. Over-fitting is where
the model fits too well to the training data, while

performing poorly on unseen data. Dropout can be
applied to reduce over-fitting during training (39). The
key idea is to ‘‘drop’’ some information during training,
so that the model is forced to better learn general pat-
terns in the dataset, rather than memorizing specific pat-
terns. This process will compromise some training
performance, but improve generalization (performance
on unseen data). Figure 4 shows an example of a dense
layer with and without dropout. When a dropout layer is

Figure 3. A standard LSTM module with interacting components, unrolled in time.

(a) (b)

Figure 4. A dense (fully connected) neural network with and without dropout.

Figure 5. Model deployment and retraining process.
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applied, during training, a percentage of the outgoing
connections from the previous layer are stochastically
removed. After training (during testing or application),
the model is expected to have learned general patterns,
and all connections are henceforth included.

Model Deployment

The models that achieved the best performance are
deployed in a decision support system to predict short-
term traffic conditions in the observed area. Figure 5
illustrates the real-world application of the iterative
model training and deployment process. The real-time
travel speeds are periodically retrieved every 5 min and
used as input data for the models. To allow the model to
perform accurately, the input data needs to be passed
through the same features generation module as in the
training process. This real-time data is used to generate
predictions of upcoming traffic conditions, as well as
being collected for model retraining. The predictions are
generated by the models in milliseconds, and the out-
comes are displayed on the live map to support TMC
operators in making precise and timely decisions. A
detailed description of the visualization system is pro-
vided in the Visualization System section below. The pre-
dictive model is retrained and validated frequently with
recent traffic data, because the traffic patterns change
over time for various reasons (e.g., special events, school
holidays, infrastructure updates, etc.). The model could
even be updated based on changes in the data, or new
model developments. In the proposed system, the models
are retrained overnight for daily updates of the traffic
patterns. The model update process is referred as ‘‘itera-
tive model development’’ which can be described as
follows:

1. The features from recent travel speed data are
stored in the historical database.

2. The historical database is used to retrain existing
models and generate new models by optimizing
the parameters of proposed architectures.

3. New models are evaluated and the model with the
best performance is deployed for real-time predic-
tion and the visualization system.

Experiments

This section provides details about the data, the model
development and the parameter selection processes. The
experimental results are also presented and discussed,
along with a visual evaluation and real-world
application.

Data Description

The investigated area belongs to Victoria corridor, one
of the key and very busy corridors in NSW, Australia.
The relevant links were chosen from the major Victoria
roads segments (for both directions) in Rozelle, NSW
where travel speed data is available. This study covers
approximately twelve days of travel speed data (from 01-
Apr-2017 to 12-Apr-2017) which includes 15 segments of
Victoria Road, Drummoyne NSW, Australia. The travel
speed data for each segment is recorded every 5 min
(e.g., 00:00, 00:05, ..., 23:55). Figure 6 depicts the loca-
tions of the investigated road segments on the map,
where the 3-digit tags are the segment ids. As presented
in this figure, all road segments are directly connected or
very close to each other. The travel speeds on these seg-
ments are thus expected to have spatial and temporal
correlations. However, the data quality is different for
each road segment; most of the missing data points were
replaced by their values from the previous timestep.

Evaluation Methods

The deep learning models are compared with other popu-
lar algorithms in the literature for short-term travel speed
prediction. Using the same dataset, the following models
have been developed and compared:

� Parametric models: ARIMA and linear regression
(LR) (40, 41).

� Non-parametric models: Gaussian process (GP)
and k-nearest neighbor (3NN) (42, 43).

� Non-parametric deep learning networks: LSTM-
and convolution-based networks.Figure 6. Road segments investigated for travel speed

predictions.
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The travel speed data input for non-deep learning
methods is processed and converted into standard time-
series format. The general data headers include
‘‘Time_index, Segment_Id_1, Segment_Id_2, ...,
Segment_Id_15.’’ In this format, the first column

contains the time stamp indexes for each 5 min, e.g., ‘‘1/
04/2017 11:00,’’‘‘1/04/2017 11:05,’’‘‘1/04/2017 11:10,’’ etc.
The following columns store corresponding travel speeds
for individual road segment. An example travel speed
record is represented as ‘‘1/04/2017 11:00, speed_1,
speed_2, ..., speed_15.’’ In some cases, when the data is
missing for a specific time stamp, it will be replaced with
average travel speed from previous and next time stamp
of the same segment. The classical time-series models
were developed on Weka (44) with the basic heuristic
parameters selection process where a set of configura-
tions were defined by the authors and executed by Weka
Experiment Environment.

The evaluation metric is the root-mean-square error
(RMSE). It is calculated as

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

t = 1

(y(i) � ŷ(i))
2

s
, ð3Þ

where n is the number of predicted values in the sequence
(given by the length of the sequence minus the lookback
window length). At each time i, ŷ(i) is the predicted value
and y(i) is the true value.

Figure 7. Model performance during training and testing
processes for a single run with MSE as loss function.

Figure 8. Travel speed predictions for road segment 474 over the training (test) data shown in orange (green). The ground-truth data is
shown in blue. These predictions are made 5 min (one timestep) in advance, using the LSTM model.
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Model Development and Parameter Selection

The first 8 days of the 12-day dataset is compiled as the
training dataset (67% of the data) and the last 4 days is
used as the test set (33%). Note that different lengths of
training data were separately tested, and the evaluation
performance is consistent with more than 7 days of train-
ing data. Mean-squared error (MSE) is used as the loss
function for model training. This is simply the square of
the evaluation metric (RMSE) in Equation 3 above.

Figure 7 represents the performance evaluation during
the training and testing procedures. Both the training
and testing procedure converge after approximately 100
iterations (epochs). MSE is used as loss function in the
training process. The performance difference between
training and testing is insignificant, suggesting that the
model is not over-fitted to the training data.

Figure 8 shows a snapshot of the LSTM model
(described in the following section) fitting results for the
training and testing data for road segment number 474.
The real data is shown in blue, whereas the (single-run)
predictions for the following timestep (5 min ahead) are
in orange and green for training and test data, respec-
tively. Despite the high volatility in the data, the LSTM
model captures the patterns in the data very well in both
the training and testing data. The precise extreme values
consistently display errors of around 2km/h; this could
be because of the challenge of predicting these precise
values. Further testing on the model could evaluate
whether additional nodes help with this extreme-value
prediction.

The deep learning architectures are implemented using
Keras where each method is tested with a number of opti-
mizers (e.g., SGD, Adagrad, Adadelta, Adam, Adamax,
Nadam, RMSprop) (45). Besides the optimizer (and for a
given deep learning architecture), there are two main
parameters to be selected during the model training

process: the number of epochs and the batch size. In
machine learning, an epoch is completed when an entire
training set has been passed though the model once. The
batch size is the number of elements of the training set
that are passed through the model before updating the
weights (to gradually optimize the model) based on the
model performance over the given batch. For each opti-
mizer, different combinations of epoch and batch size are
investigated and a corresponding heat map is generated.
Figure 9 presents a heat map visualization of parameter
selection for the LSTM model using the Adam optimizer.
In this heat map, the test RMSEs are presented in color.
Lighter colors denote lower RMSE, corresponding to
better performance. The map includes some stochasticity
(noise) as just a single run of the model was conducted
for each set of parameters, as significant computational
resources are required to generate the heat map. When
deciding the value of a parameter, both the RMSE value
in the parameter evaluation, and the robustness of the
parameter (the consistency of surrounding colors) are
considered. This ‘‘robustness’’ consideration is motivated
by expecting consistent performance of a set of model
parameters (with new training and test data inputs) when
the nearby model parameter values achieve consistent
RMSE results. For instance, 150 epochs and a batch size
of 70 performed well for the parameter testing (has low
RMSE), however this also has low robustness. For differ-
ent input data, the model may be expected to perform
poorly. In contrast, 250 epochs and a batch size of 65 has
both high performance and robustness. The hyperpara-
meters for the model were also selected. The activation
functions in the LSTM layer were those predefined by
Keras (hyperbolic tangent and hard sigmoid for the
recurrent activation), whereas the activation function in
the dense output layer was linear. The convolution layers
involved 32 output filters (from different convolution
‘‘blocks’’), a kernel (convolution window) size of 3 and a
rectified linear unit (ReLU) activation function. Where
dropout was applied, the dropout rate was 0.5.

Results and Discussion

To compare the performance of deep learning architec-
tures, as well as alternate predictive models, road seg-
ment 474 is selected for evaluations. This segment is in
the middle of the investigated area, with a high quality
of recorded data (no missing or constant data series). In
Table 1, the performance comparison for each model on
road segment 474 is presented. The best result for each
column is highlighted in bold.

Among classical regression algorithms, LR and GP
achieve the best performances with very similar results.
For predictions of up to 20 min ahead, the deep learning
algorithms consistently outperform classical approaches.

Figure 9. A heat map visualization of parameter selection for the
LSTM model. The color scale represents the test RMSE (km/h).
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However, for 25–30 min predictions, the GP method per-
forms equally as well as the LSTM deep learning method,
while the CNN-LSTM method has a higher RMSE
(results were shown for the test data). The strong perfor-
mance of the GP model is notable. However, for large
numbers of input features as well as large input datasets,
computation with the GP approach becomes prohibi-
tively costly (46).

The results from three deep learning architectures for
travel speed prediction is presented (the lower three
entries in Table 1). The model denoted ‘‘LSTM’’ uses a
single hidden layer of LSTM units, followed by a drop-
out layer and a fully connected output node. The input
for the model is prepared as in Equation 1, with a look-
back window D= 5 timesteps (each timestep is 5 min)
for 15 relevant road segments. This model is among the
top performers for each prediction. Taking the input to
this architecture as in Equation 2 did not perform as well.
Furthermore, the combination of CNN-LSTM architec-
ture, with a convolutional layer, followed by an LSTM

layer (with a dropout layer) before the fully connected
output node are also applied. This model uses the input
form of Equation 1 (the form of Equation 2 provided
similar results), and is intended to exploit the spatial as
well as temporal information in the input. Despite the
additional complexity, this model was generally outper-
formed by the simpler LSTM model. This could reflect
that the more complex model is more easily trapped in a
sub-optimal minimum of the loss function. Alternately, it
could reflect that a more complex implementation of spa-
tial convolutions is required. For the CNN layer, the
input features are arranged in a regular way (for 1-D con-
volutions, they are arranged in a list of time-series inputs),
and correlations are determined locally. Although differ-
ent input feature orderings were tested, there is no pre-
processing step to explicitly encode which segments were
near other segments: such pre-processing could poten-
tially improve the efficacy of the convolution approach,
as could additional convolutional layers. Finally, note
that the inputs to the LSTM model are densely connected

Table 1. Travel Speed Prediction Performances (RMSE)

Model 5 min 10 min 15 min 20 min 25 min 30 min

ARIMA 3.64 4.741 5.476 6.042 6.588 7.133
LR 3.68 4.65 5.27 5.87 6.43 6.97
GP 3.67 4.62 5.25 5.83 6.36 6.88
NN 5.25 5.93 6.39 7.05 7.79 8.7
MLP 4.01 5.8 7.44 9.21 10.96 12.57
LSTM 3.55 (0.02) 4.48 (0.03) 5.08 (0.04) 5.71 (0.04) 6.33 (0.04) 6.89 (0.02)
CNN-LSTM 3.59 (0.06) 4.46 (0.06) 5.09 (0.02) 5.80 (0.05) 6.44 (0.07) 7.71 (0.14)
LSTM2 6.40 (0.12)

Note: Units in km/h; values in brackets are the standard error in the mean.

Table 2. RMSE Scores of the LSTM Model for Travel Speed Prediction

Segment Id 5 mins 10 mins 15 mins 20 mins 25 mins 30 mins

36 3.74 4.94 6.45 7.64 9.22 9.87
37 3.35 3.80 4.17 4.27 4.90 4.59
179 2.00 2.21 2.45 2.91 2.84 2.89
188 2.90 3.08 3.51 3.68 3.94 4.29
189 4.37 5.12 5.63 6.25 6.76 6.94
190 2.43 2.84 3.12 3.31 3.71 4.02
191 4.63 4.95 5.40 5.01 4.92 5.16
221 4.11 4.32 4.19 4.29 4.34 4.60
474 3.50 4.58 5.09 5.54 6.22 6.92
475 0.63 0.59 0.49 0.59 1.90 0.83
476 2.80 2.81 3.82 3.66 3.07 3.58
625 0.60 0.64 0.64 0.64 0.63 0.64
869 1.35 1.30 1.12 1.24 1.14 1.14
870 0.31 0.99 0.27 0.37 0.40 0.32
887 2.56 2.85 3.25 3.79 4.08 3.82
Mean RMSE 2.62 3.00 3.31 3.54 3.87 3.97

Note: Units in km/h.
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to the LSTM input nodes. This means that spatial rela-
tionships between features can be learned in this model,
even if they are not learned based on the spatial arrange-
ment of the segments in the actual road network—which
is expected would help with the generality of the model
when testing.

The challenge of making longer-term (30 min) predic-
tions is reflected by the increasing RMSE values for each
method. Benefits of the LSTM and CNN-LSTM for the
short-term predictions are lost as the prediction time
increases; the GP method performs equally well but is
also increasingly inaccurate. To address this more chal-
lenging prediction timescale, the sequential input struc-
ture of Equation 2 is employed for a deeper LSTM
network with two hidden layers, ‘‘LSTM2.’’ Unlike the
other methods, where a lookback window of five time-
steps was sufficient for optimal or near-optimal results
with fast data processing, the consideration was given to
the longest lookback windows for LSTM2. In particular,
the result presented is for a lookback window of 24
hours (each timestep is 5 min, so this corresponds to
D= 12 3 24 timesteps). The gain from the additional
temporal data and temporal processing ability of the
deeper LSTM network is evident in the improved result.

Note that the calculation time for the corresponding
larger dataset is also vastly increased—this is why just
the single prediction is included in the results table. For
reference, a lookback window of 100 min (20 timesteps)
already provided some gain in performance in the same
architecture: the mean RMSE in this case was 6.62 (with
0.08 standard error in the mean) for the 30-min
prediction.

Table 2 shows the travel speeds predicted by a single
run of the LSTM model, from 5 min ahead to 30 min
ahead on multiple road segments. The RMSE is pre-
sented in each case. Given that the speed limit for each
segment is 70km/h, the deep learning model accuracy
(RMSE) is lower than 5 km/h. Aside from segment 36,
the predictions for 30 min ahead have an RMSE below
7km/h. Note that some segments (e.g., 475 and 870) have
extremely low RMSE values for all predictions: this is
because of a data quality issue, as these segments have
many constant speed values throughout the investigated
period, making the time series easier to forecast. On the
other hand, segment 36 has the larger RMSE value
because of a high level of fluctuations in the time-series
data. Typically, only a single run would be performed
for prediction of vehicle speeds in real time.

Figure 10. Visualization system for travel speed prediction
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Visualization System and Real-World
Application

Visualization System

To support TMC operators to evaluate the model inde-
pendently, as well as to respond to real-time predictions,
the model’s prediction results are plotted in an interac-
tive map interface which displays historical data and
predicted data simultaneously for visual comparison.
Figure 10 illustrates the visualization system for third-
party evaluation. The system is developed using Shiny
on R platform. In this interface, the top left map displays
real traffic conditions which are color-coded based on
historical travel speed of each road segment. The map
on the right side shows corresponding prediction results
on the same area. The operator can choose to validate
the predictions from 5–30 min ahead for any given data
point in the period.

The historical data and prediction distribution for any
sub-period (e.g., 1 hour, 1 day, 1 week, etc.) can be
reviewed easily to understand the traffic patterns before
and after the prediction time. This function is also useful
to look back and analyze any abnormal traffic patterns
for road accidents or planned events. Furthermore, using
the play-back button on the right-hand corner of the
timeline, the traffic conditions can be updated dynami-
cally, including the color-coded segments on the map
and traffic speed plots which are displayed and automat-
ically updated over time.

Real-World Application

As demonstrated in the Results section, the proposed sys-
tem is capable of forecasting the travel speeds on multiple
segments simultaneously for up to 30 min ahead.

One key application of these results is that they can
be used to manage incident response. The model can pre-
dict and help analyze the impact of an incident on
nearby road segments, as soon as an incident is reported.
The travel speed prediction and visualization system is
expected to help the TMC operators to improve their
procedures, response plans, and resource allocations to
traffic incidents, to quickly reduce congestion and
improve road safety.

From the experiments, as the prediction took only a
few milliseconds on an Intel i7-7700 machine with 8 cores
and 16GB of RAM, the system is fast enough to run
using continuous, live travel speeds (updating every 5
min) for a suburb’s main roads, to consistently predict
the traffic conditions up to 30 min ahead. As a conse-
quence, it can be utilized to monitor a real-time traffic
network for a specific area (e.g., areas with special events
or a traffic accident) and support timely planning for
unusual traffic patterns that may arise.

Conclusions

This paper introduces a decision support system for
short-term travel speed prediction on multiple road seg-
ments. A number of deep learning models, including
RNNs with LSTM units and convolutional components,
have been investigated to capture the temporal and spa-
tial correlations between the travel speeds on spatially
related road segments. Experimental results demonstrate
that the deep neural networks outperform other tradi-
tional approaches in short-term travel speed prediction
on multiple road segments. The best-performing models
(LSTM for up to 25 min and LSTM2 for 30 min) are
then integrated into a visualization system for real-world
application.

The system can be directly applied for real-time deci-
sion support at TMCs, and can provide a real-time fore-
cast of travel speed on multiple road segments up to 30
min in advance.
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V. Melichar, and N. Bojović. SARIMA Modelling
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