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Abstract: Recent years have seen a significant amount of transportation data collected from multiple sources including road
sensors, probe, GPS, CCTV and incident reports. Similar to many other industries, transportation has entered the generation of
big data. With a rich volume of traffic data, it is challenging to build reliable prediction models based on traditional shallow
machine learning methods. Deep learning is a new state-of-the-art machine learning approach which has been of great interest
in both academic research and industrial applications. This study reviews recent studies of deep learning for popular topics in
processing traffic data including transportation network representation, traffic flow forecasting, traffic signal control, automatic
vehicle detection, traffic incident processing, travel demand prediction, autonomous driving and driver behaviours. In general,
the use of deep learning systems in transportation is still limited and there are potential limitations for utilising this advanced
approach to improve prediction models.

1 Introduction
The ability to process a large amount of data to provide accurate
traffic forecasts is important in modern transportation decision
support systems. An efficient decision support system can
potentially help to minimise incident response time, enhance
situation awareness and reduce congestion duration.

However, traffic data processing and modelling are challenging
because of the complexity of road networks and spatial-temporal
dependencies among them. Furthermore, traffic patterns are
heterogeneous, meaning different road segments often have distinct
time-variant traffic patterns. A large amount of traffic data is
recorded hourly from multiple data sources and sensors, but it is
difficult to combine into features for training prediction models,
due to significant differences in time, network coverage and data
quality.

In the literature, there are many applications of traditional
machine learning methods (e.g. support vector machines, logistic
regression, decision trees, Bayesian network etc.) which have been
developed to predict traffic data [1–5]. However, most of these
prediction systems used shallow traffic models which were
considered as unsatisfying for big data scenarios [6]. Therefore,
this paper reviews deep learning architecture (DLA), a rising
research interest in the machine learning field, with a special focus
on the transportation domain. In the following sections, a general
overview of deep learning approaches is presented, followed by
their application in popular traffic data analytics topics including
transportation network representation, traffic flow forecasting,
traffic signal control, automatic vehicle detection, incident
inference, and travel demand prediction.

2 Deep learning overview
A DLA usually consists of multiple levels of representation,
constructed by composing non-linear modules that transform the
representation at one level into a representation at a higher and
more abstract level [7]. With sufficient numbers of these
transformations, the models are able to learn complicated functions
and structures. For example, in the classification task, the features
that are important for discrimination are usually retained from
higher layers of representation, while irrelevant variations are
suppressed. The key advantage of deep learning over traditional
methods is that the feature selection process is automated by a
general-purpose learning procedure, without any human

involvement. With their specifiable hierarchical learning depths,
deep learning approaches have demonstrated high performance in
discovering the structure of high-dimensional data in many
domains, such as computer vision [8, 9], natural languages
processing [10, 11], speech recognition [12, 13] and bioinformatics
[14, 15].

Fig. 1 illustrates a traditional neural network versus a DLA. The
key difference is the number of hidden layers. Simple neural
networks usually contain only one hidden layer and require a
feature selection process. On the other hand, a deep learning neural
network contains two or more hidden layers and it can perform
optimal feature selection and model tuning during the learning
process [16]. There are many other deep learning structures
including recurrent neural networks (RNNs) [17], deep
convolutional networks (DCNs) [18], deep restricted Boltzmann
machines (RBM) [19], stacked auto-encoders (SAEs) [20], deep
belief networks (DBN) [21] and long short-term memory networks
(LSTM) [22], which will all be reviewed and discussed along with
their applications in the transportation domain in the following
sections. 

3 Transportation network representation
Due to their capability of modelling spatial and temporal
dependencies within traffic networks, a number of deep learning
methods were applied in a study by Ma et al. [23], to represent the
traffic condition on road segments (links) in transportation
networks. Traffic congestion for a network with N links within T
time intervals was expressed as a two-dimensional matrix
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t represents the traffic congestion condition on the nth link at

time t, as either a binary value (congested or not) or as an n-level
traffic condition (e.g. quiet, light traffic, heavy traffic, congested
etc.). Learning from historical data of T intervals, the model will
then predict the traffic condition of all links at time T + 1. When a
prediction is performed on an individual row (link), the task is
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similar to a single sequence learning problem. However, in the case
where multiple rows (links) are predicted simultaneously, the task
can be considered as a high-dimensional sequence learning
problem, which requires a DLA with temporal processing
capabilities.

The authors used a combination of a RNN and a RBM to model
the traffic network. RNN is a special neural network which has at
least one internal state to provide a feedback loop from
intermediate outputs, back to the inputs. This permits temporal
sequence learning. In particular, they leveraged a widely used
structure of RNN named state space neural network structure
(Fig. 2). In this structure, delay units are used to connect previous
hidden unit activations with new inputs into the neural network. 

An RBM model is based on energy estimation, and structurally
comprises a hidden layer, along with a visible layer, where there
are mutual connections between units in both the visible and
hidden layers (Fig. 3). The authors used a conditional RBM, which
adds an additional feedback loop between the visible and hidden
layers, to support learning temporal sequences. The bias values for
both the hidden layer and visible layer are updated using feedback
from the previous visible units. Both RNN and conditional RBM
models apply a similar approach to update bias values. 

The conditional RBM and RNN were combined to build an
RNN-RBM model as represented in Fig. 4. bv

(t) and bh
(t),

respectively, represent the bias vectors for the visible layer and
hidden layer in RBM model at time t, and are updated through the
hidden units u(t–1) in RNN model at time t–1. Weight matrices Wuv
and Wuh are provided to connect the RNN model and RBM model
[21]. 

This network representation is simple to implement; however,
its main limitation is that the model needs to automatically learn
and infer the spatial dependency (e.g. related road segments) from
historical data, which may result in low prediction accuracies.

Aiming to improve upon the above limitation, Fouladgar et al.
[24] proposed a deep traffic flow model based on a convolutional
neural network (CNN) that considered inflow and outflow
information in addition to traffic condition on a road segment.
CNN is often composed of one or more convolutional layers with
non-linear activation functions and one or more fully connected
layers, as in a standard neural network. This architecture was

originally designed to exploit the 2D structure of an input image
for image processing purposes. Transportation researchers take
advantage of this trait to implicitly consider the spatial correlation
between road segments in a traffic network. Each convolutional
layer usually comes with a sub-sampling (max-pooling) layer
which is responsible for reducing the size of the feature maps,
hence reducing the computational requirements as well as
minimising the likelihood of over-fitting. The CNN structure is
optionally followed by a number of fully connected layers, which
are similar to a standard multilayer neural network.

From the study [24], for each point S on the traffic network, L1,
L2, …, and Ln are adjacent points which have flow to S, and R1, R2,
…, and Rm are adjacent points into which S has flow. Li and Ri are
both arranged by their distance to S, and then a point snapshot at
time t is defined as

[Ln → Ln − 1 → …L2 → L1 → S → Rm → Rm − 1 → …R2
→ R1 → S] over time series [t − δ, …, t − 1, t]

Formally, a point snapshot S after time t is defined by a matrix with
size (n + m + 1) × t, and a network snapshot is the union of all point
snapshots (Fig. 5). 

Fig. 6 illustrates the deep learning model during the training
process. In this figure, the features of the model are classified into
two general groups, namely, Traffic Condition and Incidents.
Firstly, past traffic conditions are passed to the first filter of CNN
as the training set. Then, the outcome of the first layer will be sent
to the second convolutional layer. After each cycle, the size of the
input will be reduced due to the filter (ζ × ζ) applied on it. This
trend is repeated until all of the matrices are reduced to a set of
one-dimensional arrays. The incidents can then be provided as
input for the fully connected network. The final fully connected
network will predict the values of traffic flow on N junctions at
next time period t + 1. 

In the same paper, Fouladgar et al. [24] also introduced a
LSTM network to model traffic conditions. LSTM is an extended
RNN architecture which is capable of learning long-term
dependencies. LSTM carries the information forward through
multiple time steps, as a long-term memory. It has a similar chain
architecture as in RNN, but the repeating modules have a special
internal design. An RNN module only has a single neural network
layer (e.g. tanh layer), while there are four different interacting

Fig. 1  Difference between simple neural network and deep learning
neural network

 

Fig. 2  State space neural network structure
 

Fig. 3  RBM structure
 

Fig. 4  RNN-RBM model
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layers inside an LSTM repeating module in general. Fig. 7 shows
an instance of an LSTM repeating module. 

The authors claimed that the short-term future traffic condition
for a network junction can be predicted based on the traffic patterns
from its neighbouring roads, even when there was no historical
traffic condition for it. Considering the structure of LSTM, the
traffic flow network is presented in Fig. 8. From this figure, the
traffic condition of junction S and traffic condition of In(S) and
Out(S) at time t − α are passed to the first LSTM layer. Then, in the
next step the traffic condition of point S, In(S), and Out(S) at time t
– (α − 1) is passed to the second LSTM layer. This cycle is
repeated until the last layer and output is the traffic condition of S
at time t + 1 (Fig. 8). 

The above transportation network representation methods
attempt to predict the traffic condition for all road segments in the
network. However, the impact prediction for a specific incident or
area may not be modelled appropriately because DLA based on a
large traffic network may be too general to model smaller areas, or
individual incidents at a specific location. Like many other
methods, a DLA may not achieve high performance, without
proper configuration and parameter selection.

4 Traffic flow prediction
Traffic flow prediction is a basic problem in transportation
modelling and data analytics. It aims at estimating the number of
vehicles in a road segment for several time intervals in the future
[25]. Many reported methods have not been able to achieve
desirable results, due to reasons including shallow architectures,
manual feature selection and separated learning [26].

Huang et al. [26] introduced a two-level DLA which included a
multi-output regression layer at the top and a DBN at the bottom
for traffic flow prediction. The authors claimed that this is the first
application of deep learning in transportation research. A DBN is
constructed as a stack of RBMs, with only one hidden layer in each
RBM. The activations of trained units within each RBM are passed
to the next RBM in the stack. In earlier research, a fast greedy
learner for DBN was proposed by Hinton et al. [27] which learnt
only one layer at a time.

Huang et al.'s DLA for traffic flow prediction is presented in
Fig. 9. On a single road or intersection, the input space X contains
all the observation points for previous time intervals. Then the
input space is connected to a DBN for unsupervised feature
learning. Finally, the supervised prediction is performed by a

sigmoid regression layer at the top. For predicting traffic flow for
the large traffic network, a multi-output regression is executed for a
group of road segments. In this case, the related roads should be
grouped together, as the overall performance is only improved
when jointly trained tasks are related to each other [28]. For
transportation network, several grouping methods were used to find
related roads in the traffic flow prediction including spatial
clustering (adjacent roads and junctions) or traffic flow variation
clustering [29]. In this study, the authors presented a weight
clustering method which found related roads based on the weight
of the top layer of the architecture. The deepest layer of the DBN
usually contains only the most representative and useful features
from the data. 

The authors conducted experiments for both short-term traffic
flow, as well as experiments for up to 60 min predictions. The
results of their DLA were compared with other existing methods
for traffic flow prediction, including ARIMA, Bayesian model,
support vector regression (SVR), neural network model, and the
multivariate non-parametric regression model [30]. However, the
performance of the DLA was not found to be significantly different
than the traditional methods, when tested on PeMS dataset. DLA
only excelled when tested on road segments with low-to-medium
levels of traffic flow.

In a more recent study, Polson and Sokolov [31] introduced a
DLA for short-term traffic flow prediction (up to 40 min) that
combined a linear model trained using L1 regularisation and a
sequence of tanh layers. This architecture is a standard and simple
implementation of deep learning, but they evaluated their
predictions on special events data which had sharp and sudden
traffic flow regime changes. The deep learning approach achieved
a mean-squared error (MSE) of 14% lower than the neural network
with one hidden layer.

Zhao et al. [32] presented another deep learning approach for
short-term traffic forecast, which represented the temporal-spatial
correlations using an LSTM network. This work is similar to the
LSTM structure for transportation networks presented in [24]. The
main contribution of [32] is that besides traditional ML methods
(e.g. ARIMA and SVM), the authors also compared their proposed
LSTM network with other deep learning approaches (e.g. RNN and
SAE). According to the experimental results, the performance of
the LSTM network outperformed all other methods, especially
when the forecast time is long. These results demonstrated the
advantages of LSTM over: RNN when dealing with a long-time
sequence problem; and over the classical parameterised approach
when dealing with big traffic data.

Fig. 5  Point snapshot and network snapshot [24]
 

Fig. 6  Deep traffic flow convolutional network (flow chart from [24])
 

Fig. 7  Standard LSTM module with four interacting layers
 

Fig. 8  Long short-term memory traffic flow [24]
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5 Traffic signal control
Traffic congestion is one of the biggest issues in modern
transportation systems. One solution is to extend road
infrastructure, but this is extremely expensive and time-consuming
– especially for the already established cities. Alternatively,
increasing the efficiency of management systems, including traffic
signal controllers (TSCs) can help to optimise vehicle flow in order
to reduce congestion and emissions. Many systems have utilised
reinforcement learning for TCS, which demonstrated some
remarkable results [33–35]. However, most of them did not fully
benefit from recent available data [36]. To take advantage of recent
big data, Genders and Razavi [36] introduced a deep artificial
neural network based on DCN to build an adaptive traffic signal
control agent. This agent was trained using reinforcement learning
to develop an optimal control policy. The method was then
evaluated in the traffic micro simulator SUMO. In this research, the
authors introduced a new state space as discrete traffic state
encoding based on information density (Fig. 10). 

The encoded traffic state was used as input to a DCN and
trained using Q-learning with experience replay [37]. The deep
reinforcement learning (DRL) method was then compared with a
one hidden layer neural network TSC agent. DRL is an extension
of traditional reinforcement learning with a deep network. With the
support of deep learning, the entire process of reinforcement
learning from observation to action is changed as there is no
requirement to explicitly design state space or action space. On
average, DRL reduced cumulative delay by 82%, queue length by
66% and travel time by 20% [36].

Van Der Pol [38] applied a similar DRL method for TSC, which
combined DCN and Q-learning; however, he differentiated his
work by using a binary matrix to encode the traffic state for the
whole intersection, rather than just a road segment (Fig. 11).
Furthermore, his experiments were executed for both single agent
and coordinated multi-agent (up to 4) reinforcement learning. In

general, the DRL approach outperformed the baselines and it is
applicable to a multi-agent setting. However, there were several
factors that could affect the stability of the algorithm and it is
recommended to use a prioritised experience replay [38]. 

Independently, Li et al. [39] also set up a deep neural network
(DNN), to learn the Q-function of reinforcement learning for traffic
signal timing. Instead of using a DCN, this research utilised an
SAE neural network for approximating Q function (Fig. 12). SAE
is a DNN that comprises multiple layers of sparse auto-encoders.
The SAE neural network takes the state matrix as input and will
output the Q-value for each possible action. In this work, a greedy
layer-wise approach was applied to train each layer to be stacked in
the auto-encoders for initialising the weights of a deep network. It
is concluded that DRL performed remarkably better than
traditional methods in deciding an appropriate signal timing plan. 

6 Automatic vehicle detection from image
processing
Traditionally, traffic data is collected by magnetic loop detectors or
piezoelectric sensors which may not produce consistent and
reliable counts. Increasingly, non-intrusive recognition systems,
such as unmanned aerial vehicle image system or camera-based
vehicle recognition system, have become viable with the
introduction of deep learning algorithms [40].

A DNNs method was proposed to classify cars, sedans and vans
[41]. However, some pre-extracted features from a well-trained
DNN were transferred to their model for the experiment due to lack
of training datasets, so the adaptability of their model needs further
clarification. The support vector machine (SVM) technique has
also been used to conduct multi-class and intra-class vehicle-type
classifications, including geometric-based approaches and
appearance-based approaches [42]. Wang et al. [43], proposed a 2D
deep belief network for vehicle detection. The algorithm applied
second-order planes instead of first-order vectors as input, and
bilinear projection for retaining discriminative information. The
model achieved 96.05% accuracy on test data. Adu-Gyamfi et al.
[44] proposed a deep convolutional neural network in their vision
system to detect and classify vehicles into seven classes, and
achieved average recall rates between 89 and 99% for seven
classes of vehicles.

However, the accuracy of the aforementioned state-of-the-art
vehicle detection and classification algorithms still needs to
improve, especially under adverse weather conditions. In addition,
video cameras can monitor road and traffic conditions in real-time
and extract important traffic information such as volume, density,
vehicle type and even congestion status; however, only a few
researchers have worked on this. Finally, vehicle speed detection,
which currently requires coordinate system transformations and
field calibration, should also provide valuable data for
transportation agencies.

7 Travel demand prediction
Travel demand prediction aims to estimate the number of road or
public transport users in the future. It is one of the most
fundamental problems in transportation, because most
transportation models use passenger demand as an input. The
majority of travel demand prediction studies in literature were for
planning purposes which attempted to predict the long-term travel

Fig. 9  Deep learning architecture for traffic flow prediction
(a) Single road, (b) All roads prediction tasks are jointly trained via multi-output
regression [26]

 

Fig. 10  Discrete traffic state encoding example
(a) Vehicle positions and colour-coded speeds, (b) Binary position matrix, (c) Encoded
speed matrix [36]

 

Fig. 11  Binary position matrix for vehicle position modelling [38]
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demand. A four-step demand model (trip generation, trip
distribution, modal choice and trip assignment) is the most popular
approach for this purpose.

Short-term travel demand prediction is an emerging research
topic, which aims to anticipate the traffic demand in the near
future, based on current and historical data sources. Short-term
travel demand prediction has only attracted much interest recently,
with the proliferation of modern data sources such as smart cards,
traffic sensors, probes, GPS and CCTV. These data are enormous
in volume, rich in detail and complicated in their architecture.
Deep learning techniques for short-term travel demand prediction
have emerged from the need to exploit these data sources for a
versatile, accurate prediction in real time or within a short
computation time.

Cheng et al. [45] presented several deep learning models to
forecast the day-to-day travel demand variations on a large-scale
transport network in Florida, USA. The models aim to inherently
consider both temporal and spatial correlations. Three models
including a DNN, a stacked LSTM network and a feature-level
data fusion model were developed and evaluated. The experiment
results showed that the stacked LSTM network had the best
accuracy among the proposed models.

Ke et al. [46] proposed a new deep learning approach to
simultaneously consider the spatial, temporal and exogenous
dependencies when predicting short-term passenger demand for an
on-demand transport service. The proposed model, namely the
fusion convolutional long short-term memory network (FCL-Net),
is a fusion model of multiple convolutional LSTM (conv-LSTM)
layers, standard LSTM layers and convolutional layers. The
experiment results showed that the proposed FCL-Net model was
able to capture the correlation of spatial-temporal features and
exogenous variables to provide better predictive performance,
compared to other approaches in literature.

Zhu et al. [47] developed a deep learning model to predict car-
sharing demand, as an important input for identifying locations of
car-sharing depots. Similar to [45, 46], the main benefit of the deep

learning structure of the proposed model is to consider the spatial
and temporal correlation of demand. In [47], the deep learning
model consists of an SAE model to learn the latent spatial-temporal
correlation of demand, and a logistic regression layer to enhance
the prediction accuracy. In a very recent study, Yao et al. [48]
proposed a deep multi-view spatial-temporal network, which also
aimed to capture the spatial-temporal correlation of demand, to
predict the taxi demand. The proposed model has three explicit
views: temporal, spatial and semantic view. In earlier research, a
sequence learning model based on RNN was introduced by Xu et
al. [49] to predict future taxi requests in each area of a city, using
recent demand and other relevant features (e.g. weather, time, and
drop-offs). Besides taxi, the travel demand using technology
platform such as Uber is growing rapidly, especially in big cities.
Zhu and Laptev [50] introduced a novel end-to-end model
architecture for time series prediction using Uber data. In this
work, the prediction uncertainty was quantified using a Bayesian
Neural Network, which was further applied for large-scale anomaly
detection.

Liu and Chen [51] are one of the few recent studies which focus
on prediction of passenger demand in public transport. The paper
proposed a DNN to forecast the demand for the mass rapid transit
system in Taipei. The model took into consideration various
explanatory variables, including historical passenger flow,
temporal, directional and holiday factors. Another DNN for public
transport demand prediction was proposed in [52], which focuses
on the stop and stop-to-stop levels of demand. The stop-to-stop
level of demand makes this study similar to a dynamic OD
estimation study, which is also essential in public transport-related
studies.

8 Traffic incident processing
Traffic incident processing is another significant problem in
intelligent transportation systems. Major incidents can cause fatal
injuries to travellers and long delays on a road network. Therefore,
understanding the main cause of incidents and their impact on a
traffic network is crucial for a modern transportation management
system.

Chen et al. used a deep stack denoise autoencoder [53] to model
hierarchical feature representation of human mobility [54]. The
model was then trained along with incident data, to generate a
traffic incident risk map, given real-time input of human mobility
(Fig. 13). The experiment results showed that the model is capable
of predicting the traffic accident risk by observing human mobility.
However, human mobility data may not be sufficient to construct a
reliable model for risk prediction. Other factors could be
considered, including land use and origin-destination data, to
improve the presented model. 

For individual car accident prediction, Chen et al. proposed a
deep genetic algorithm (GA)-optimised neural network to predict
rear-end collisions, for use in an automatic avoidance system [55].
In this model, the probability of a collision risk is estimated based
on vehicle-to-infrastructure, vehicle-to-vehicle communication and
GPS data. To deal with randomness and local optimisation issues,
the authors decided to use GAs to optimise the coefficient array
and thresholds of the neural network. Experimental results showed
that a rationale estimation for collision risk could be generated by
the proposed framework, in a car-following scenario. This model
can also be applied in the autonomous driving domain, which is
reviewed in the following section.

9 Autonomous driving
There are numerous applications of deep learning techniques in
computer vision [56]. Since image and video processing have
strong relationships with autonomous driving, there is natural
interest in the application of deep learning computer vision to
autonomous vehicles. Huval et al. [57] performed an empirical
evaluation of deep learning on highway driving. This study
demonstrates that the existing CNN model is able to perform lane
and vehicle detection at the required computing speed for a real-
time system.

Fig. 12  Deep SAE network for traffic signal timing
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While most research in autonomous driving focused on
highway or arterial road driving, an earlier work presented by
Hadsell et al. proposed a DBN in a long-range vision system, for
autonomous off-road driving [58]. In this paper, the features from
an input image were extracted and trained a real-time classifier to
predict traversability. The experimental outcomes showed that the
model was capable of identifying trees, paths, artificial objects and
ground in a smooth and accurate way, to the horizon. However, the
success of the classifier depended on the size of training data,
which required large context-rich image windows.

10 Driver behaviours
With the availability of in-vehicle sensors and GPS data, automatic
classifying driving styles of human drivers are an interesting
research problem. A high-dimensional representation of driving
features is expected to bring advanced benefits to autonomous
driving and auto insurance industries. One of the first attempts of
applying deep learning to driving behaviour analysis using GPS
data was introduced by Dong et al. [59]. The authors developed
CNNs with 1D convolution and RNNs to study their performance.
As a result, high level and interpretable features were effectively
extracted by this method, which was able to describe complex
driving patterns. Furthermore, deep learning algorithms
significantly outperformed classical methods on identifying the
driver based on GPS driving patterns.

Another application of deep learning in driver behaviour
analysis is detecting a drowsy driver [60]. In this case, the main
method is based on computer vision techniques. CNN was utilised
to capture latent facial features and complex non-linear feature
interactions. The model achieved over 92% accuracy. The system
can be applied in real time, to give an early warning to drivers for
drowsiness, and to avoid a traffic accident.

11 Conclusions
This paper presented a review of recent deep learning approaches
in the transportation domain. In general, deep learning algorithms
have been applied to many popular transportation topics, and have
demonstrated promising results for traffic data analytics. Most of
the presented studies are heavily application-focused, without a
strong novel contribution to the theory. However, there has been

some effort to integrate spatial-temporal dependencies of the traffic
network into deep learning models, but the number of studies is
still limited and their scopes are quite specific. For example, in
incident impact prediction, very few deep learning studies have
been published and it is difficult to find a novel method which can
predict the spatial-temporal consequences of an incident on the
road network.
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