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Abstract 

Smart Card Automated Fare Collection (AFC) data has been extensively exploited to understand 

passenger behavior, passenger segment, trip purpose and improve transit planning through 

spatial travel pattern analysis. The literature has been evolving from simple to more sophisticated 

methods such as from aggregated to individual travel pattern analysis, and from stop-to-stop to 

flexible stop aggregation. However, the issue of high computing complexity has limited these 

methods in practical applications. This paper proposes a new algorithm named Weighted Stop 

Density Based Scanning Algorithm with Noise (WS-DBSCAN) based on the classical Density 

Based Scanning Algorithm with Noise (DBSCAN) algorithm to detect and update the daily 

changes in travel pattern. WS-DBSCAN converts the classical quadratic computation complexity 

DBSCAN to a problem of sub-quadratic complexity. The numerical experiment using the real 

AFC data in South East Queensland, Australia shows that the algorithm costs only 0.45% in 

computation time compared to the classical DBSCAN, but provides the same clustering results. 

Introduction 

Smart Card Automated Fare Collection (AFC) system has been increasingly popular in public 

transport, providing a massive quantity of continuous and dynamic data on passenger boarding 

and alighting locations. This information provides a tremendous opportunity to analyze spatial 

travel patterns of the transit users-defined in terms of the regular boarding and alighting stops of 

transit passengers. An emerging number of studies have extensively explored multiday travel 

pattern (Chu and Chapleau, 2010; Kieu et al., 2014; Ma et al., 2013) to understand individual 

travel behaviors (Ma et al., 2013), passenger segmentation (Kieu et al., 2014), trip purpose (Lee 

and Hickman, 2014) and potential in transit planning (Utsunomiya et al., 2006). A detailed 

review of existing advances in AFC analysis could be found in Pelletier et al. (2011). 

Spatial travel pattern is defined in this paper as regular origin-destination (OD) that transit 

passenger usually travels between. The literature of travel pattern analysis using AFC data has 

been evolving from simple to more sophisticated methods such as from aggregated to individual 

travel pattern analysis, and from stop-to-stop to flexible stop aggregation. Although considerable 

research has recently been devoted to capturing the individuality and travel behaviors of transit 

passengers, rather less attention has been paid to the practical computing constraints which limit 

those methods in real-world applications. So far, existing method have been confined to first-

time analysis of spatial travel pattern – i.e. finding the travel pattern from AFC data without any 

prior knowledge of passenger travel pattern, leaving the question of updating this information 

from the existing travel pattern knowledge unanswered. To make the best use of the individual 

travel pattern in customized service provision and operational strategies, travel pattern has to be 

updated daily to observe the changes in passenger behaviors. After the last service of the day, 

transit operator collects all Smart Card transactions of the day and updates travel pattern of each 



individual passenger before the first service of the next day. However, existing methods have 

been developed with increasing complexity and degree of detail, while the number of Smart 

Cards and transit journeys are also growing rapidly. A full spatial travel pattern analysis would 

be an absurd task to perform within this short time gap of a few minutes to hours. Consequently, 

there is a need for a time-effective algorithm to observe and record the evolution of travel 

pattern.  

This paper proposes a new algorithm named Weighted Stop Density Based Scanning Algorithm 

with Noise (WS-DBSCAN) based on the classical Density Based Scanning Algorithm with 

Noise (DBSCAN) aiming to rapidly detect and update individual spatial travel patterns while 

maintains high degree of detail in travel pattern analysis, which enables transit operators to use 

this information on a daily basis. This research focuses on spatial travel pattern analysis only, 

because spatial pattern analysis as a two-dimensional problem has much more complexity than 

temporal travel pattern. We also focus on developing a new algorithm to detect and update 

individual travel pattern, without actual analysis to mine spatial and temporal travel patterns 

from transit passengers.  

The paper first reviews the existing studies on travel pattern analysis using AFC data. After the 

description of the data processing method, the paper describes the DBSCAN implementation in 

travel pattern analysis. The WS-DBSCAN algorithm along with an example of its 

implementation is then presented. The numerical experiment shows the effectiveness of the 

proposed method compared to the classical DBSCAN algorithm. A discussion and future 

research directions finally concludes the paper.  

Literature review 

The use of AFC data enables us to continuously analyze the multiday travel patterns of a much 

larger population than the traditional travel survey method. The existing studies in the literature 

have explored travel pattern by different level of aggregation on passenger and stop level.  

Existing passenger aggregation approaches for travel pattern analysis 

An emerging number of publications have recently analyzed transit passenger travel pattern by 

different level of aggregation from whole aggregated dataset to each individual Smart Card user. 

Utsunomiya et al. (2006) is an example of aggregated dataset analysis. The authors described the 

data possessing and analysis methods to mine meaningful information from AFC data. Jang 

(2010) demonstrated the use of AFC data in travel time and transfer locations analysis. The 

method facilitates the comparison between different transit modes and the identification of 

passenger transfer choices. Hasan et al. (2013) exploited AFC data to observe both spatial and 

temporal passenger travel pattern. The authors modeled two important passenger decisions: (a) 

which place to visit (by assuming a fixed probability of visit to each regular place) and (b) how 



long to stay (by a hazard based duration modeling). The whole dataset analysis explores general 

travel patterns from transit passengers.  

Some other authors emphasized the similarity of travel pattern by subgroup. Their analyses are 

based on the aggregation of several similar characteristics of the transit trip and passenger. 

Morency et al. (2007) aggregated the Smart Card users into five classes according to the card 

type and the privilege of route usage. The travel profile of each card type could be well observed 

by investigating the indicators of spatial and temporal travel pattern. Chu et al. (2009) proposed a 

new framework to mine spatial-temporal distribution of transit demand by different aggregation 

level such as stop, route, link, node and card type. Lee and Hickman (2014) developed a heuristic 

rules algorithm and a classification decision tree to group Smart Card users into multiple classes 

and infer their trip purposes. 

Although aggregated travel pattern analysis provides insights into the travel pattern of general 

user, it fails to capture the individuality of travel behavior. The typologies passenger groups are 

also predefined which might not reflect the similarity of passengers between the same class, and 

the difference between classes.  

Several studies have recently enriched the travel pattern comprehension by individually 

analyzing each Smart Card user. Chu & Chapleau (2010) described a disaggregated travel pattern 

analysis framework for multi-day AFC data. “Anchor points” or repeated travel locations are 

mined from each Smart Card user and then assigned to known spatial coordinates. Ma et al., 

(2013) and Kieu et al., (2014) used the classical DBSCAN algorithm, originally proposed in 

Ester et al. (1996), to mine spatial and temporal travel patterns from AFC data.  

Existing stop aggregation approaches for travel pattern analysis 

Travel pattern analysis often spatially breaks down to stop-to-stop repeated journeys. However, 

the limitation of this method has been identified by several authors (Lee and Hickman, 2013). A 

transit stop is usually linked with only a single direction or route, while transit passengers 

normally have several route choices options within their origin destination locations. Any stops 

within the immediate vicinity that provide the same access should be considered in the same 

travel pattern, because transit passengers might choose them randomly or by the first arriving 

schedule. In literature different stop aggregation approaches are proposed to group spatially close 

stops into the same travel pattern. Chu & Chapleau (2010) aggregated stops within 50m of each 

other to form a new node. Lee et al. (2012) and Lee & Hickman (2013) proposed a model named 

“Stop aggregation model” to group stops according to the proximity, stop description and 

catchment area. Ma et al. (2013) and Kieu et al. (2014) applied the DBSCAN algorithm for stop 

aggregation model. Compare to other approaches, DBSCAN provides flexibility in defining the 

group of stops that the passenger repeatedly choose. DBSCAN clusters stops of close proximity, 

and the travel pattern is defined according to the number of repeated journeys.  



Table 1 summarizes the aforementioned review of the existing advances in travel pattern analysis 

using AFC data.  

Table 1 Comparative overview of the literature on travel pattern analysis using Smart 

Card data  

Paper SC data 

type 

Passenger 

aggregation 

Stop 

aggregation 

Method Aim 

Utsunomiya et 

al. (2006) 

Entry only Dataset No Statistic Investigate the potential 

of AFC in transit 

planning 

Jang (2010) Entry-Exit Dataset No Statistic Travel time and transfer 

analysis 

Hasan et al. 

(2013) 

Entry only Dataset No Simulation Spatial-temporal 

analysis 

Morency et al. 

(2007) 

Entry only Group  No Data mining Spatial-temporal transit 

use variability 

Chu et al. 

(2009) 

Entry only Group  No Data mining Passive survey from 

AFC data 

Lee & 

Hickman 

(2014) 

Entry only Group  Yes Rules-based 

heuristic and data 

mining 

Trip purpose inference 

Chu & 

Chapleau 

(2010) 

Entry only Individual  Yes  Data mining Multiday spatial-

temporal analysis 

Ma et al. 

(2013) 

Entry only Individual  Yes  Data mining Multiday spatial-

temporal analysis 

Kieu et al. 

(2014) 

Entry-Exit Individual  Yes  Data mining Passenger segmentation 

 

Methodology 

Existing studies provide insights into the problem of travel pattern analysis. After the description 

of the dataset and itineraries reconstruction process, this section presents the classical DBSCAN 

application to travel pattern analysis and proposes the WS-DBSCAN algorithm. 

Data description 

The AFC data used in this study comes from Translink, the transit authority of South East 

Queensland (SEQ), Australia. The dataset is a compilation of approximately 34.8 million 

transactions made by a million Smart Cards over 15 thousands transit stops of the bus, city train 

and ferry networks in SEQ from 1st March to 30th June 2012. Each transaction contains the 

following fields: 

1) CardID: Unique Smart Card ID 

2) T_on: Timestamp for touch on (boarding) 

3) T_off: Time stamp for touch off (alighting) 



4) S_on: Station ID at touch on 

5) S_off: Station ID at touch off 

6) ValidIndicator: A binary indicator for differentiating valid from invalid transactions. It 

has been used by the operator for ticketing purpose. Valid transaction is the combination 

of a touch on and a touch off from the same transit line, within a 2 hours limit (Translink, 

2007). Any cases other than that, e.g. no touch off, or touch off at a different line, etc. are 

indicated as invalid transactions. Only around 3% of the transactions are invalid.    

7) RouteUsed: The transit line that the passenger has used.  

8) Direction: Direction of travel (Inbound/Outbound) 

For the current analysis, the study is performed only on working days (weekdays excluding 

public holidays and school holidays) because travel behavior on working weekdays can be 

significantly different than that of weekends and holidays. 

Reconstruction of travel itineraries 

The first step in travel pattern analysis is to reconstruct the full travel itinerary from individual 

transactions. The flowchart on Figure 1 illustrates the algorithm to connect individual 

transactions from each SC user on each working day into completed journeys from first origin 

stop to the last alighting stop. The algorithm is built on a binary “ReconstructingIndicator” to 

identify on-going/new journey status; and a “JourneyID” to distinguish the completed journeys.  

A fixed threshold of 60 minutes is then used to decide if the two transactions are connected. This 

threshold has been chosen differently in the literature (Seaborn et al., 2009). The 60 minutes is 

chosen in accordance with Brisbane’s public transport threshold for continuation journeys 

(Translink, 2007). Here, the first origin stop and the last alighting stop of a completed journey 

are defined as the “origin stop” and the “destination stop”, respectively. The following 4 steps 

describe the journey reconstruction process. 

1) STEP 1: A binary ReconstructingIndicator is defined and assigned as zero. 

2) STEP 2: The ValidIndicator is checked. If the indicator is equal to 0 (which denotes an 

invalid transaction) the corresponding journey will be discarded.  

3) STEP 3: If ReconstructingIndicator is zero, a variable OriginLocation is defined and set 

as equal to the current T_on. We also assign a new unique JourneyID, change 

ReconstructingIndicator to one, save the current transaction and move to the next 

transaction.   

If ReconstructingIndicator is one and the time gap between the current T_on and the last 

T_off is less than 60 minutes, we move to Step 4. 

If the time gap is more than 60 minutes, transactions with previous JourneyID is 

connected into a completed journey. New JourneyID and OriginLocation are assigned, in 

which the current transaction is identified as the first leg from the origin stop. The 

ReconstructingIndicator is set as 1. 



4) STEP 4: If the current S_off is different to OriginLocation, the transaction is connected to 

the journey as a continuation journey and we move to the next transaction. If it is the last 

transaction of the day, or S_off is equal to OriginLocation, the journey reconstruction 

process is completed and we move back to Step 1.  

 

Figure 1 Journey reconstruction flowchart 

The four-step process reconstructs full itineraries from AFC data, enables us to observe the 

origin-destination locations and journey chains of each individual passenger. Table 2 shows an 

example of reconstructed itineraries from two transit passengers in 1
st
 Apr 2012.  

Table 2 Example of travel itineraries of two random passengers 

Each transaction of 

each SC on each 

working day

No

Yes

No

Yes

Connect the 

transaction into the 

Journey 

(keep initial 

JourneyID)

Transactions database 

(Set ReconstructingIndicator as 0)

Yes

Journey 

reconstruction 

completed

No

Assign new 

JourneyID, 

OriginLocation, 

set 

Reconstructing-

Indicator as 1

1

Set 

Reconstructing-

Indicator as 0

0 1

0

Discard 

correspond-ing 

Journey (all 

transactions 

with current 

JourneyID), set 

Reconstruct-

ingIndicator as 

0 

Is the time gap 

to previous 

transaction less 

than 60 mins ?

Check 

Reconstructing-

Indicator

Is the 

transaction’s 

destination 

different to the 

Origin ?

Is that the last 

transaction ?

Check 

ValidIndicator

Store completed 

Journey, assign 

new JourneyID 

& 

OriginLocation, 

set 

Reconstructing-

Indicator as 1

Store 

completed 

Journeys



SC 

ID 

  

 

 

Day Journey 

ID 

Origin 

Time 

(min 

from 

0h) 

Destination 

Time 

(min from 

0h) Stop ID Sequence 

Total 

travel 

time 

(min) 

Total 

transfer 

time 

(min) 

Total 

time 

(min) 

Route ID 

Sequence 

X1 

1 

Apr 1697 680.2 686.54 5 4 6.34 0 6.34 999 

X1 

1 

Apr 1083 557 566.9 54371 24653 9.9 0 9.9 726 

X2 

1 

Apr 1415 898.08 905.24 12861 2452 15212 7.16 41.42 48.58 550 562 

X2 

1 

Apr 1412 887.45 944.63 10730 499 88 57.18 32.7 89.88 690 999 

 

The classical DBSCAN algorithm 

The existing literature promotes DBSCAN as one of the best solutions for spatial travel pattern 

analysis of individual passenger for the following reasons (Kieu et al., 2014; Ma et al., 2013) 

1) As mentioned in the Literature review, DBSCAN provides a flexible solution to spatial 

travel pattern analysis. DBSCAN identifies clusters of high density and also noise which 

does not belong to any clusters. In travel pattern analysis, noise is anomaly pattern and 

clusters are the regular spatial travel pattern. 

2) DBSCAN identifies cluster of any shape and sizes. In spatial travel pattern analysis, the 

clustered transit stops could form any shape and sizes. 

3) DBSCAN does not require predetermination of initial cores or number of clusters. This 

feature is also very important for travel pattern analysis because the number of patterns 

from an individual passenger is unknown.  

This section first describes the classical DBSCAN algorithm and thereafter proposes a modified 

DBSCAN algorithm to dynamically identify individual travel pattern. 

The classical DBSCAN algorithm defines clusters as dense regions, separated by regions of 

lower density. The algorithm has two global parameters: the maximum density reach distance   

and the minimum number of points MinPts. We define the  -neighborhood for a point p as the 

number of points in the dataset that has distance to p less than , including the point p itself. The 

most common distance metric used is the Euclidean distance. Each point in the data set is 

classified as: 

 Core point: A point is considered as a core point if its  -neighborhood is greater than or 

equal to MinPts. 

 Border point: A point is considered as a border point if its  -neighborhood is less than 

MinPts but the point in itself lies within  -neighborhood of a core point. 

 Noise: A point is considered as a noise if it is neither a core nor a border point. 



A cluster is defined by combining the core points which are connected by their associated border 

points. Interested reader can refer to Ester et al. (1996) for more detailed description of 

DBSCAN. Figure 2 provides an example of core, border point and noise in DBSCAN 

definitions. The illustrated circles are centered at a point and have a radius of  .Considering 

MinPts as 4: 

a) Point p1 is a core point because its -neighborhood is four (q1,q3,p2 and p1 itself). It’s a core 

point because this  -neighborhood is equal to MinPts. Similarly point p2 is also a core point. 

b) Point q1 is a border point because its  -neighborhood is 3 (p1,n1 and q1 itself) and point q1 

lies within the  -neighborhood of the core point p1. Similarly point q2 and q3 are border points. 

c) Point n1 is the noise because its  -neighborhood is only 2 and it is not within the  -

neighborhood of any core point. 

 

Figure 2 An example to illustrate core point, border point and noise point definitions for 

DBSCAN 

Kieu et al. (2014) proposed a two-level spatial travel pattern mining procedure from 

reconstructed itineraries using the classical DBSCAN algorithm. Figure 3 illustrates this spatial 

travel pattern analysis for a random passenger. Here, the O points represent the origin stops and 

D points represent the destination stops in the historical itineraries. The two levels are described 

as follows 

1) Level 1: DBSCAN algorithm clusters origin stops into regular origin stops and 

q1

p1

p2

q2

The circles show the maximum density reach distance 

p1,p2 are core points; q1,q2,q3 are border points 

and n1 is a noise

MinPts = 4

n1

q3



anomaly origin stops. The DBSCAN algorithm with   equals 1000m and MinPts 

equals 8 is applied to define Cluster 1 at stop O1, and O2 as anomaly origin stops. 

2) Level 2: Among the destination stops of each origin stop, DBSCAN algorithm 

differentiates the regular and anomaly destination stops. The same parameters are used 

to identify two clusters of destination stops at D1 and D2. 

If both origin stop and destination stop are not anomaly pattern, the corresponding OD is 

identified as a regular spatial travel pattern. In our example, the OD pairs O1-D1 and O1-D2 are 

regular spatial travel patterns. Interested readers can refer to Kieu et al. (2014) for more detailed 

explanation of the two-level spatial travel pattern analysis. 

 

Figure 3 Two-step DBSCAN procedure for Regular OD mining 

Weighted-Stop Density-Based Scanning Algorithm with Noise (WS-DBSCAN) 

DBSCAN provides a good solution to identify spatial travel pattern from passenger historical 

itineraries. However, the major disadvantage of the DBSCAN algorithm is its quadratic 

computing complexity, which restricts transit operators to update individual travel pattern daily. 

DBSCAN takes approximately 25 hours for a Core i5, 8GB Ram personal computer to analyze & 

update the individual travel patterns of all passengers who has a transit journey within a day in 

SEQ, Australia. It means it took more than a day to update the daily changes in travel pattern, 

which would result in a one-day lag in transit operators understanding of their customers. 

Although transit authorities could employ a faster computer, running DBSCAN for daily update 

of individual travel pattern is an absurd task.  



This section develops the theoretical foundation of the Weighted-Stop DBSCAN (WS-DBSCAN) 

algorithm to transform the quadratic complex classical DBSCAN to a problem of sub-quadratic 

complexity, in particular a combination of linear and quadratic complexity with fewer elements 

to detect and update the changes in travel pattern of individual transit passengers. The objective 

of WS-DBSCAN is to cluster each studied transit journey St to a spatial travel pattern or anomaly 

pattern and update the changes in travel pattern. This section only describes the process of 

detecting and updating regular origin patterns – the Level 1 of the two-level travel pattern 

analysis described in Figure 3. The Level 2 could be analyzed by WS-DBSCAN using similar 

method.  

The following three principal features distinct WS-DBSCAN to the classical DBSCAN.  

 WS-DBSCAN follows the same two-level analysis process as described in Figure 3, but 

instead of finding regular pattern as the first-time analysis like DBSCAN, WS-DBSCAN 

utilizes the existing knowledge of individual travel pattern to cluster the studied journey. 

Although WS-DBSCAN can also be used for first-time travel pattern analysis, it is best 

used for detecting and updating the changes in individual travel pattern. 

 DBSCAN performs a neighborhood search from each and every point to decide if the 

point is a core, border or noise point. This task has a quadratic programing complexity. 

Conversely, WS-DBSCAN only performs neighborhood search when it is necessary 

(more details on the WS-DBSCAN algorithm will be demonstrated in Figure 6). 

 Most of transit passengers repeatedly board or alight a transit vehicle from a stop. The 

classical DBSCAN treats each boarding/alighting as a unique point, which means there 

are overlapping points in the dataset. WS-DBSCAN significantly reduces the 

computation time by clustering the stops rather than the boarding/alighting itself, and 

gives each stop a weight i.e. the number of times the passenger boarded/alighted from 

that particular stop.  

Following the definitions from the classical DBSCAN paper (Ester et al., 1996), we propose the 

basic terminologies for WS-DBSCAN. 

Definition 1: The weighted -neighborhood of a transit stop p, denoted by  N p , is defined 

by 

 
1

,( ,) |
n

q p

q

p W W q DN dist p q 


     

Where: 

 Wq is the weight of each stop q i.e. number of times the passenger boarded a transit vehicle from 

stop q  



Wp is the weight of stop p itself,  

 ,dist p q is the Euclidean distance between stop p and q and  

D is the stop dataset. 

Definition 2: A stop p is a core stop if and only if   Mip tsN nP   

If p is a transit stop and the passenger has made more than MinPts number of boarding in a 

weighted -neighborhood around p, then p is called a core stop. 

Definition 3: A stop q is directly reachable from a stop p wrt  and MinPts, if 

1)  q N p , and 

2)   Mip tsN nP  (i.e., p is a core stop) 

Definition 4: A stop q is a border stop when it is not a core stop, but directly reachable from a 

core stop p.  

Figure 4 demonstrates an example of core and border stop in WS-DBSCAN. Here for MinPts 

equals to 4, stop p1 and p2 are core stops, whereas q1 is a border stop for p1. The arrow illustrates 

that q1 is directly reachable from p1, but p1 is not directly reachable from q1. In contrariety, p1 

and p2 have two-way directly reachability between them, because both p1 and p2 are core stops 

and lie within the  distance of each other. A border point is directly reachable only from a core 

point and not from another border point. However, a border point can be directly reachable from 

multiple core points. 

 

Figure 4 An example of core stop, border stop and direct reach in WS-DBSCAN 
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Definition 5: A stop q is reachable from a stop p wrt  and MinPts if there is a chain of stop 

p1,…,pn, p1=p, pn=q such that pi+1 is directly reachable from pi.  

Definition 6: A stop p is connected to a stop q wrt  and MinPts if there is a stop o such that o is 

reachable from both p and q and vice versa.  

Figure 5 shows an example of reachable and connected stops in WS-DBSCAN. Here, p1, p2, p3 

and p4 are core points. Pont o1 is a border point to both p1 and p3 and reachable from both p1 and 

p3. As indicated in the figure, p1 and p2 are reachable, and p3 and p4 are reachable. Therefore, p2 

and p4 are connected through o1. 

 

Figure 5 An example of reachable and connected stops in WS-DBSCAN 

Definition 7: A cluster C wrt  and MinPts is a set of stops acting as a regular pattern. A cluster 

would have at least one core stop, and satisfy the following conditions: 

1) p,q: if p C and q is directly reachable from p wrt and MinPts, then qC 

(Maximality) 

This condition is to guarantee that all stops within a reachable area are considered in the 

same origin pattern. It also denotes that a regular pattern would have at least MinPts 

number of journeys, because cluster C would have at least a core stop p and its 

corresponding border stops q. 

2) p,q C: p is connected to q wrt and MinPts (Connectivity & Uniqueness)  

All stops in a cluster are at least connected, if not directly reachable or reachable. This 

condition is also to guarantee that two clusters would be distinct and stops from cluster C 

would not be connected from another cluster because if any stop is connected from two 

clusters, then the two clusters would be clustered as one. Thus any core or border stop 

would belong to one and only one cluster. 

Definition 8: Anomaly stops wrt  and MinPts are the stops that do not belong to any travel 

pattern. They are not directly reachable to any stop. Thus they are not core or border stops, and 

vice versa.  
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The WS-DBSCAN algorithm 

This section describes the WS-DBSCAN implementation to detect a pattern for an origin stop St 

from a newly made journey and update the existing knowledge of passenger P travel pattern. The 

detection and pattern update of the destination stop from the same journey is done using similar 

method.  

The existing travel pattern knowledge has the form of a historical stop database [SH] for 

passenger P that stores historical origin stops with their corresponding Weight and ClusterID.  

Here, the Weight Wi of each stop Si is the number of times the passenger has boarded a transit 

vehicle from that specific stop. Cluster number Ci of each stop i indicates if stop Si is a regular (

0,i iC C   ) or anomaly stops (Ci  = -1). Different positive Ci means different regular travel 

pattern. Table 3 shows an example of historical stop dataset [SH] and studied stop St. 

Table 3 Examples of: a) Historical stop dataset [SH] and b) Studied stop St 

a)   

Historical origin stops [SH] 

Stop Si Weight Wi ClusterID Ci 

O1 8 1 

O2 2 1 

O3 14 2 

O4 1 -1 

O5 2 -1 

b) 

Studied new stop [St] 

Stop Si Weight Wi ClusterID Ci 

St 1 Unknown 

 

WS-DBSCAN detects a travel pattern by assigning a ClusterID for St 

 WS-DBSCAN assigns an existing positive ClusterID if St belongs to an existing pattern 

 WS-DBSCAN assigns a new positive ClusterID if St together with some other stops in 

[SH] form a new pattern 

 WS-DBSCAN assigns ClusterID equals -1 if St is an anomaly pattern 

After each implementation, WS-DBSCAN increments the corresponding Weights by one and 

updates ClusterID according to the assignment of St’s ClusterID. Figure 6 and the following 

steps describe the algorithm. 

1) STEP 1: The first step is to check the sum of weights of all stops in [SH] 
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If 
[ ] 1

HSW MinPts   then we proceed to STEP 2. Else St is stored into [SH] as an anomaly 

stop because there is then no possibly for passenger P to have any travel pattern formed.   

Here, MinPts-1 is used because the current journey contributes to a weight for the current 

stop. 

2) STEP 2: If St already belongs to [SH] and has a positive ClusterID Ct. Its Weight Wt in 

[SH] is then incremented by one. Else the algorithm proceeds to STEP 3. 

3) STEP 3: The following calculations are performed to checks if St could form a cluster 

with any stops in [SH] 

 Calculate the weighted -neighborhood of St when the dataset is [SH] 

1
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If ( )tN S MinPts  , St is a core stop. There are three possibilities: a) belongs to one 

existing cluster; b) belongs to multiple existing clusters; and c) does not belongs to 

existing cluster so should be assigned a new cluster number.  

a) ( ),Ct qq N S 

    

If within ( )tN S  there is only one regular stop q, then St belongs to the 

existing cluster of q and is assigned the corresponding cluster number. All 

stops within its weighted -neighborhood are also assigned the same cluster 

number.  

b) 
1 2 1 2 n, .. ( );C ,C ..C

C C ( , {1,2.. })

n t

qj qk

q q q N S

j k n



  

  
 

If within ( )tN S  there are multiple regular stops 1 2, .. nq q q  (n>1), where at 

least there are regular stops j and k belongs to two different clusters 

C C ( , {1,2.. })qj qk j k n  , we merge their clusters and St to a combined cluster 

Cq because by adding St all these stops will be connected (See Definition 7). 

All these corresponding stops are then assigned a new combined cluster 

number Cq.  

c)  ( ),Ct qq N S 

   

If within ( )tN S  there is no regular stop, St forms a new cluster with the stops 

in its weighted -neighborhood. All these corresponding stops are then 

assigned a new cluster number. 

The corresponding Weight of St is incremented by one in each of these possibilities. 

 If ( )tN S MinPts  , St is not a core stop but it could be a border stop if any stop q 

within its weighted -neighborhood is a core stop.  
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If any ( )N q MinPts  , St is then a border stop. Similar to the previous case, St and its 

corresponding stops are assigned with an existing or new cluster number.  

 If ( )N q MinPts  , we can conclude that St is anomaly stop and store it in [SH] with 

ClusterID equals -1. The corresponding Weight of St is incremented by one. 

 

Figure 6 WS-DBSCAN algorithm 

WS-DBSCAN implementation on full OD pattern detection and update 

This section describes the WS-DBSCAN implementation on detecting and updating a full travel 

itinerary using an example. Figure 7 shows WS-DBSCAN implementations on the journeys the 

passenger P made within the day d.  
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Figure 7 An example of WS-DBSCAN implementation 

WS-DBSCAN requires two types of input: 

 Input 1 is the historical itineraries database that stores the historical origin stops, 

destination stops; and a spatially regular OD database that stores the full OD 

itineraries. Each historical origin and destination stop is associated with a Weight and 

a ClusterID. Cluster number differentiates the regular origin/destination patterns and 

anomaly pattern. Each OD itinerary in the Spatially OD pattern database is also 

associated with a Weight, a variable OD pattern and a binary variable indicating 

regular/anomaly OD pattern. The OD pattern stores the Cluster numbers of both 

origin and destination stop in the format [OClusternumber;DClusternumber].  

Here O1 and O2 both belong to origin cluster 1, so both O1-D1 and O2-D1 have [1;1] 

for their OD pattern. We define an OD pattern i as a regular OD pattern if the total 

Weight of its OD Pattern is larger than MinPts.  

 Input 2 is the journeys that passenger P made during the studied day, where P made 

three journeys within the day d in this particular example. Each OD itinerary in Input 



2 is fed into the WS-DBSCAN algorithm. Here, passenger P made 3 journeys O1-D1, 

O1-D3 and O4-D1 during the study day d. 

WS-DBSCAN provides two sets of output. While Output 1 represents the pattern detection, 

Output 2 represents the pattern update feature of WS-DBSCAN.  

 Output 1 is the assigned cluster number of each itinerary in Input 2. Here O1, D1 and D3 

are identified as regular stops and O3 as anomaly stop.  

 Output 2 takes Output 1 results and shows the updated spatial travel pattern in terms of 

origin/destination and OD pattern. Here among the three journeys passenger P made 

within the day d, O1-D1 is clearly a spatial regular OD pattern and O4-D1 and O5-D4 are 

clearly an anomaly patterns. Although both O1 and D3 are regular stops, the pair O1-D3 

is an anomaly pattern because its OD Pattern does not have a Weight higher than MinPts.  

Numerical experiment 

This section validates the applicability of WS-DBSCAN to the real data, in comparison with the 

classical DBSCAN algorithm. 

Experiment setup  

The numerical experiment is set to emulate a working environment to compare the performance 

of classical DBSCAN and WS-DBSCAN. The last working week (Monday to Friday) of June, 

2012 has been used as the testing dataset, whereas the other weeks acted as the historical 

itineraries data. The experiment emulates a working environment by the following three steps 

1) At the end of each day in the testing dataset (last working week of June 2012), we collect 

all Smart Card transactions of the day 

2) The algorithm illustrated in Figure 1 reconstructs individual transactions into passenger 

itineraries 

3) The classical DBSCAN and WS-DBSCAN analyzes the studied day itineraries and 

relates with the historical itineraries data to detect and update the travel pattern. The 

implementation of DBSCAN and WS-DBSCAN has been described in Figure 3 and 

Figure 7, respectively.  

We adopt the same example of detecting and updating passenger P travel pattern after day d in 

Figure 7 to compare the two algorithms. While Input 1 and Input 2 in Figure 8 are fed into WS-

DBSCAN, historical OD journeys similar to Table 2 and Input 2 are fed into DBSCAN.  

Experiment results 

Table 4 shows the comparison between the time efficiency of DBSCAN and WS-DBSCAN. We 

compare the two performances by calculating the ratio between WS-DBSCAN computation time 

and DBSCAN computation time.  
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Where tDBSCAN and tWSDBSCAN are the computation time of the DBSCAN and WS-DBSCAN 

implementation, respectively.  

Table 4 Computation time comparison of DBSCAN and WS-DBSCAN to detect and 

update each studied journey. 

Algorithms Mean(s) Median(s) Mean Regular Detection(s) Mean Anomaly Detection(s) 

DBSCAN 223.34 10
 

223.23 10
 

223.52 10  
222.72 10  

WS-DBSCAN 410.78 10
 

410.47 10
 

410.23 10  
411.17 10  

Qt 0.46% 0.45% 0.43% 0.49% 

Mean and Median of computation time are for a two-level analysis detection & update for a studied journey in the testing dataset in seconds. The 

time is counted from an itinerary is presented, until the update process is completed. 

  

WS-DBSCAN costs only around 0.46% in computation time compared to the classical 

DBSCAN, while provides the same mined travel pattern results as DBSCAN by sharing the 

same clustering method and parameters. Table 5 shows the observed computation time for 

detecting and updating the travel pattern of all passengers travelled on each day from 18
th

 to 22
nd

 

June 2012. 

Table 5 Travel pattern detecting and updating time for each testing day 

Day 18
th
 Jun 19

th
 Jun 20

th
 Jun 21

st
 Jun 22

nd
 Jun 

DBSCAN 23.59 24.79 25.29 25.72 25.30 

WS-DBSCAN  0.11 0.11 0.12 0.12 0.12 

Qt 0.46% 0.44% 0.47% 0.47% 0.47% 

Computation time is counted in hours. The analysis has been performed on all travelled passengers on each day 

While DBSCAN took approximately a day to detect and update the changes in spatial travel 

pattern of all passengers travelled on each testing day, WS-DBSCAN takes 6-7 minutes of 

computation time. Figure 8 illustrates the computation time of WS-DBSCAN when the 

passenger has different number of journeys and number of OD pairs in the historical dataset. The 

computation time varies from 48.5 10 to 412.5 10 seconds. The WS-DBSCAN is exceptionally 

fast when the number of journeys in the historical dataset is large and the number of OD pairs is 

small. The algorithm provides a decision in the shortest time when the number of journeys is less 

than MinPts, because the studied journey is definitely an anomaly pattern. The algorithm is only 

slightly slower for passengers whose the number of journeys is close to the number of OD pairs. 

These passengers only account for less than 3% of the population.  



  

Figure 8 WS-DBSCAN computation time 

WS-DBSCAN time-effectiveness is further illustrated in comparison with the DBSCAN 

computation time. Figure 9(a) shows that DBSCAN cost more as the number of journeys 

increases, reflecting its quadratic computation complexity. The difference between the 

computation time of DBSCAN and WS-DBSCAN algorithm on the same problem is 

demonstrated in Figure 9(b). The figure shows that the time savings by using WS-DBSCAN 

instead of DBSCAN is greater as the number of journeys is getting larger.  

(a)  



(b)  

Figure 9 DBSCAN computation time: a) in seconds, b) in comparison with WS-DBSCAN 

The numerical experiment demonstrates that WS-DBSCAN is more than 200 times faster while 

provides the same travel pattern analysis as DBSCAN.  

Sensitivity analysis of WS-DBSCAN parameters 

WS-DBSCAN requires the same set of parameters same as in DBSCAN: the minimum number 

of journeys MinPts and the density reach distance  . These parameters decide the detection 

result in WS-DBSCAN and DBSCAN which have to be chosen carefully before implementation.  

The maximum density reach distance  denotes the walking distance of the passenger from one 

to another stop of the same journey pattern. For instance a student might randomly board from 

stop A or stop B to travel to school, and  is the distance between these two stops. The Transit 

Capacity and Quality of Service Manual shows that 90% of passengers would walk less than 

500m to transit stops (TRB, 2013). If we increase , more stops will be considered as regular 

origin stop. should not be too large since both origin and destination might be clustered into the 

same boarding pattern if  is larger than the travel distance.  can be found by travel survey and 

vary from case to case. Burke and Brown (2007) found that people in Brisbane and Perth, 

Australia walk significantly longer than people in US cities. The definition of  is then not 

simply the walkable area but for each passenger it is the “preferable walking distance” or 

“activity area”. The value of could be different for passengers who prefer long and short walk. 

The examination of MinPts can be broken down into how transit operators define travel pattern. 

Given the number of journeys over a study period, MinPts is equal to the minimum journeys 

made to be considered as “regular”. As MinPts increases, less journeys are identified as regular 

travel patterns. A value of MinPts equal to 2 means that any repeated boarding will be 

considered as regular. Figure 10 illustrates the MinPts and sensitivity analysis results. The 

figure provides guidance on how to define spatial travel pattern. 



 

Figure 10 Sensitivity analysis of MinPts and  

MinPts should also be chosen considering the observation period of historical itineraries data. As 

the number of the total journeys increases as the observation period becomes longer, the value 

MinPts is only valid for a specific period. Figure 11 demonstrates the percentage of regular 

journeys at different period when MinPts varied from 2 to 16, and is equal to 1000 m.  

 

Figure 11 Sensitivity analysis of MinPts at different observation period 

Different values of MinPts have been used on the whole dataset (Mar to Jun 2012) and two 

shorter periods (Mar to Apr 2012 and May to Jun 2012). Shorter observation periods show lower 

share of regular journeys, especially when MinPts becomes larger. It is because there are less 

spatial travel patterns that are repeated for more than MinPts times within a shorter period. In 
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practice the observation period should be fixed and should not be too long, because passenger 

travel pattern can change significantly during a long time period. The historical itineraries data 

can be store for a period of several months in a rolling horizon process, i.e. detecting and 

updating the passenger individual travel pattern data in each period. Figure 11 also shows that 

the regular journeys shares are similar at different MinPts when the observation periods are 

equal.  

DBSCAN and WS-DBSCAN provide exactly the same travel pattern analysis results when using 

the same set of parameters (MinPts and  ). The accuracy of these algorithms when compared to 

the actual transit passenger travel pattern solely depends on these parameters. A short survey 

could solve the problem of choosing the best parameters or validate the mining results. In the 

meantime, the sensitivity analysis of MinPts and as discussed in this paper provides insights 

into the sensitivity of these parameters. 

Conclusion 

This paper proposes the Weighted-Stop DBSCAN (WS-DBSCAN) algorithm to detect and 

update spatial travel pattern in much less computation time than the classical DBSCAN 

algorithm. Compared to the classical DBSCAN, the proposed WS-DBSCAN algorithm has a 

logical mechanism suited for transit spatial travel pattern analysis. Each stop in the historical 

dataset is given a weight to reduce the neighborhood search, and only and only perform 

compulsory neighborhood search. WS-DBSCAN also embraces the existing knowledge of 

individual passenger to reduce travel pattern analyzing time. WS-DBSCAN on average detects 

and updates a new transit journey in 0.45% of what it costs for classical DBSCAN.  

The methodology presented in this paper assists transit operators to observe and record the daily 

changes in individual travel pattern. While the classical DBSCAN takes 24-25 hours for a travel 

pattern analysis of all travelled passengers for a day, WS-DBSCAN takes less than 7 minutes to 

perform the same analysis. WS-DBSCAN enables transit agencies to use individual travel 

pattern on a daily basis, such as in customized service provision and operational strategy. 

Although larger dataset than the SEQ would definitely take more time for a complete analysis, 

employing multiple computers to analyze each passenger segment would easily solve this 

problem. 

The introduction of WS-DBSCAN also enables us to investigate the possibility of using travel 

pattern data in real-time. Although most of the Smart Card systems are not associated with user 

contact information, individual travel pattern can be stored through Smart Card ID. Transit 

passengers can use a smartphone application to get customized real-time information from 

service providers for the service they regularly use. The information is given though the input of 

Smart Card ID and a proof-of-card ownership by the barcode behind each card. By managing the 

customized information by the unique Smart Card ID, the information and service can remain 

oriented for each individual and at the same time, maintain privacy. However, various practical 



issues have to be solved before individual travel pattern can be used in real-time, such as the 

computation & telecommunication constraints, which information to be given and who to be 

enrolled in the system. These problems lay out immediately accessible avenues for future 

research. In the meantime, WS-DBSCAN can be used to detect and update individual travel 

pattern for much less cost than the classical DBSCAN.  

WS-DBSCAN algorithm focuses only on spatial travel pattern analysis. Temporal and spatial 

travel pattern can also be simultaneously analyzed in a two-step approach, where the data is first 

clustered into temporal travel pattern based on the time of the day and thereafter, within the time 

period spatial pattern can be evaluated. An extension of WS-DBSCAN to consider the temporal 

attributes will reduce the analysis sample size and reveals temporal travel pattern. The joint 

consideration of spatial and temporal travel pattern is also a future research direction. 
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