
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/274009679

A modified Density-Based Scanning Algorithm with Noise for spatial travel

pattern analysis from Smart Card AFC data

Article in Transportation Research Part C Emerging Technologies · March 2015

DOI: 10.1016/j.trc.2015.03.033

CITATIONS

35
READS

1,002

3 authors:

Some of the authors of this publication are also working on these related projects:

Origin-Destination matrix estimation for large scale urban networks using big traffic data View project

Driver Model in Traffic Flow View project

Minh Le Kieu

University of Auckland

28 PUBLICATIONS 268 CITATIONS

SEE PROFILE

Ashish Bhaskar

Queensland University of Technology

110 PUBLICATIONS 884 CITATIONS

SEE PROFILE

Edward Chung

The Hong Kong Polytechnic University

196 PUBLICATIONS 1,648 CITATIONS

SEE PROFILE

All content following this page was uploaded by Minh Le Kieu on 15 January 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/274009679_A_modified_Density-Based_Scanning_Algorithm_with_Noise_for_spatial_travel_pattern_analysis_from_Smart_Card_AFC_data?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/274009679_A_modified_Density-Based_Scanning_Algorithm_with_Noise_for_spatial_travel_pattern_analysis_from_Smart_Card_AFC_data?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Origin-Destination-matrix-estimation-for-large-scale-urban-networks-using-big-traffic-data?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Driver-Model-in-Traffic-Flow?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Minh_Kieu3?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Minh_Kieu3?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Auckland?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Minh_Kieu3?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ashish_Bhaskar?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ashish_Bhaskar?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Queensland_University_of_Technology?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ashish_Bhaskar?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edward_Chung?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edward_Chung?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_Hong_Kong_Polytechnic_University?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edward_Chung?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Minh_Kieu3?enrichId=rgreq-967d6bfa216aa5d878fc88ef344446ba-XXX&enrichSource=Y292ZXJQYWdlOzI3NDAwOTY3OTtBUzo1ODI4NzA3NTk2Nzc5NTJAMTUxNTk3ODYyNjA5Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

This is an author post-print produced version of A Modified Density-Based Scanning

Algorithm with Noise for spatial travel pattern analysis from Smart Card AFC data

ScienceDirect URL for this paper:

http://www.sciencedirect.com/science/article/pii/S0968090X15001229

Article:

Le-Minh Kieu, Ashish Bhaskar, Edward Chung, A modified Density-Based Scanning

Algorithm with Noise for spatial travel pattern analysis from Smart Card AFC data,

Transportation Research Part C: Emerging Technologies, Available online 6 April 2015,

ISSN 0968-090X, http://dx.doi.org/10.1016/j.trc.2015.03.033.

Keywords: Spatial travel pattern; Public transport; Smart Card; AFC; DBSCAN

Copyrights: © 2015. Elsevier. Uploaded in accordance with the publisher's self-archiving policy. NOTICE: this

is the author’s version of a work that is accepted for publication in Transportation Research Part C: Emerging

Technologies. Changes resulting from the publishing process, such as peer review, editing, corrections,

structural formatting, and other quality control mechanisms may not be reflected in this document. Changes

may have been made to this work since it was submitted for publication. A definitive version is subsequently

published in Transportation Research Part C: Emerging Technologies

http://www.sciencedirect.com/science/article/pii/S0968090X15001229

A Modified Density-Based Scanning Algorithm with Noise for spatial travel

pattern analysis from Smart Card AFC data

Le-Minh Kieu (Corresponding Author)

Smart Transport Research Centre

School of Civil Engineering and Build Environment, Science and Engineering Faculty

Queensland University of Technology

Brisbane, Australia.

Email: leminh.kieu@student.qut.edu.au

Ashish Bhaskar

Smart Transport Research Centre

School of Civil Engineering and Build Environment, Science and Engineering Faculty

Queensland University of Technology

Brisbane, Australia.

Email: ashish.bhaskar@qut.edu.au

Edward Chung

Smart Transport Research Centre

School of Civil Engineering and Build Environment, Science and Engineering Faculty

Queensland University of Technology

Brisbane, Australia.

Email: edward.chung@qut.edu.au

mailto:leminh.kieu@student.qut.edu.au
mailto:ashish.bhaskar@qut.edu.au
mailto:edward.chung@qut.edu.au

Abstract

Smart Card Automated Fare Collection (AFC) data has been extensively exploited to understand

passenger behavior, passenger segment, trip purpose and improve transit planning through

spatial travel pattern analysis. The literature has been evolving from simple to more sophisticated

methods such as from aggregated to individual travel pattern analysis, and from stop-to-stop to

flexible stop aggregation. However, the issue of high computing complexity has limited these

methods in practical applications. This paper proposes a new algorithm named Weighted Stop

Density Based Scanning Algorithm with Noise (WS-DBSCAN) based on the classical Density

Based Scanning Algorithm with Noise (DBSCAN) algorithm to detect and update the daily

changes in travel pattern. WS-DBSCAN converts the classical quadratic computation complexity

DBSCAN to a problem of sub-quadratic complexity. The numerical experiment using the real

AFC data in South East Queensland, Australia shows that the algorithm costs only 0.45% in

computation time compared to the classical DBSCAN, but provides the same clustering results.

Introduction

Smart Card Automated Fare Collection (AFC) system has been increasingly popular in public

transport, providing a massive quantity of continuous and dynamic data on passenger boarding

and alighting locations. This information provides a tremendous opportunity to analyze spatial

travel patterns of the transit users-defined in terms of the regular boarding and alighting stops of

transit passengers. An emerging number of studies have extensively explored multiday travel

pattern (Chu and Chapleau, 2010; Kieu et al., 2014; Ma et al., 2013) to understand individual

travel behaviors (Ma et al., 2013), passenger segmentation (Kieu et al., 2014), trip purpose (Lee

and Hickman, 2014) and potential in transit planning (Utsunomiya et al., 2006). A detailed

review of existing advances in AFC analysis could be found in Pelletier et al. (2011).

Spatial travel pattern is defined in this paper as regular origin-destination (OD) that transit

passenger usually travels between. The literature of travel pattern analysis using AFC data has

been evolving from simple to more sophisticated methods such as from aggregated to individual

travel pattern analysis, and from stop-to-stop to flexible stop aggregation. Although considerable

research has recently been devoted to capturing the individuality and travel behaviors of transit

passengers, rather less attention has been paid to the practical computing constraints which limit

those methods in real-world applications. So far, existing method have been confined to first-

time analysis of spatial travel pattern – i.e. finding the travel pattern from AFC data without any

prior knowledge of passenger travel pattern, leaving the question of updating this information

from the existing travel pattern knowledge unanswered. To make the best use of the individual

travel pattern in customized service provision and operational strategies, travel pattern has to be

updated daily to observe the changes in passenger behaviors. After the last service of the day,

transit operator collects all Smart Card transactions of the day and updates travel pattern of each

individual passenger before the first service of the next day. However, existing methods have

been developed with increasing complexity and degree of detail, while the number of Smart

Cards and transit journeys are also growing rapidly. A full spatial travel pattern analysis would

be an absurd task to perform within this short time gap of a few minutes to hours. Consequently,

there is a need for a time-effective algorithm to observe and record the evolution of travel

pattern.

This paper proposes a new algorithm named Weighted Stop Density Based Scanning Algorithm

with Noise (WS-DBSCAN) based on the classical Density Based Scanning Algorithm with

Noise (DBSCAN) aiming to rapidly detect and update individual spatial travel patterns while

maintains high degree of detail in travel pattern analysis, which enables transit operators to use

this information on a daily basis. This research focuses on spatial travel pattern analysis only,

because spatial pattern analysis as a two-dimensional problem has much more complexity than

temporal travel pattern. We also focus on developing a new algorithm to detect and update

individual travel pattern, without actual analysis to mine spatial and temporal travel patterns

from transit passengers.

The paper first reviews the existing studies on travel pattern analysis using AFC data. After the

description of the data processing method, the paper describes the DBSCAN implementation in

travel pattern analysis. The WS-DBSCAN algorithm along with an example of its

implementation is then presented. The numerical experiment shows the effectiveness of the

proposed method compared to the classical DBSCAN algorithm. A discussion and future

research directions finally concludes the paper.

Literature review

The use of AFC data enables us to continuously analyze the multiday travel patterns of a much

larger population than the traditional travel survey method. The existing studies in the literature

have explored travel pattern by different level of aggregation on passenger and stop level.

Existing passenger aggregation approaches for travel pattern analysis

An emerging number of publications have recently analyzed transit passenger travel pattern by

different level of aggregation from whole aggregated dataset to each individual Smart Card user.

Utsunomiya et al. (2006) is an example of aggregated dataset analysis. The authors described the

data possessing and analysis methods to mine meaningful information from AFC data. Jang

(2010) demonstrated the use of AFC data in travel time and transfer locations analysis. The

method facilitates the comparison between different transit modes and the identification of

passenger transfer choices. Hasan et al. (2013) exploited AFC data to observe both spatial and

temporal passenger travel pattern. The authors modeled two important passenger decisions: (a)

which place to visit (by assuming a fixed probability of visit to each regular place) and (b) how

long to stay (by a hazard based duration modeling). The whole dataset analysis explores general

travel patterns from transit passengers.

Some other authors emphasized the similarity of travel pattern by subgroup. Their analyses are

based on the aggregation of several similar characteristics of the transit trip and passenger.

Morency et al. (2007) aggregated the Smart Card users into five classes according to the card

type and the privilege of route usage. The travel profile of each card type could be well observed

by investigating the indicators of spatial and temporal travel pattern. Chu et al. (2009) proposed a

new framework to mine spatial-temporal distribution of transit demand by different aggregation

level such as stop, route, link, node and card type. Lee and Hickman (2014) developed a heuristic

rules algorithm and a classification decision tree to group Smart Card users into multiple classes

and infer their trip purposes.

Although aggregated travel pattern analysis provides insights into the travel pattern of general

user, it fails to capture the individuality of travel behavior. The typologies passenger groups are

also predefined which might not reflect the similarity of passengers between the same class, and

the difference between classes.

Several studies have recently enriched the travel pattern comprehension by individually

analyzing each Smart Card user. Chu & Chapleau (2010) described a disaggregated travel pattern

analysis framework for multi-day AFC data. “Anchor points” or repeated travel locations are

mined from each Smart Card user and then assigned to known spatial coordinates. Ma et al.,

(2013) and Kieu et al., (2014) used the classical DBSCAN algorithm, originally proposed in

Ester et al. (1996), to mine spatial and temporal travel patterns from AFC data.

Existing stop aggregation approaches for travel pattern analysis

Travel pattern analysis often spatially breaks down to stop-to-stop repeated journeys. However,

the limitation of this method has been identified by several authors (Lee and Hickman, 2013). A

transit stop is usually linked with only a single direction or route, while transit passengers

normally have several route choices options within their origin destination locations. Any stops

within the immediate vicinity that provide the same access should be considered in the same

travel pattern, because transit passengers might choose them randomly or by the first arriving

schedule. In literature different stop aggregation approaches are proposed to group spatially close

stops into the same travel pattern. Chu & Chapleau (2010) aggregated stops within 50m of each

other to form a new node. Lee et al. (2012) and Lee & Hickman (2013) proposed a model named

“Stop aggregation model” to group stops according to the proximity, stop description and

catchment area. Ma et al. (2013) and Kieu et al. (2014) applied the DBSCAN algorithm for stop

aggregation model. Compare to other approaches, DBSCAN provides flexibility in defining the

group of stops that the passenger repeatedly choose. DBSCAN clusters stops of close proximity,

and the travel pattern is defined according to the number of repeated journeys.

Table 1 summarizes the aforementioned review of the existing advances in travel pattern analysis

using AFC data.

Table 1 Comparative overview of the literature on travel pattern analysis using Smart

Card data

Paper SC data

type

Passenger

aggregation

Stop

aggregation

Method Aim

Utsunomiya et

al. (2006)

Entry only Dataset No Statistic Investigate the potential

of AFC in transit

planning

Jang (2010) Entry-Exit Dataset No Statistic Travel time and transfer

analysis

Hasan et al.

(2013)

Entry only Dataset No Simulation Spatial-temporal

analysis

Morency et al.

(2007)

Entry only Group No Data mining Spatial-temporal transit

use variability

Chu et al.

(2009)

Entry only Group No Data mining Passive survey from

AFC data

Lee &

Hickman

(2014)

Entry only Group Yes Rules-based

heuristic and data

mining

Trip purpose inference

Chu &

Chapleau

(2010)

Entry only Individual Yes Data mining Multiday spatial-

temporal analysis

Ma et al.

(2013)

Entry only Individual Yes Data mining Multiday spatial-

temporal analysis

Kieu et al.

(2014)

Entry-Exit Individual Yes Data mining Passenger segmentation

Methodology

Existing studies provide insights into the problem of travel pattern analysis. After the description

of the dataset and itineraries reconstruction process, this section presents the classical DBSCAN

application to travel pattern analysis and proposes the WS-DBSCAN algorithm.

Data description

The AFC data used in this study comes from Translink, the transit authority of South East

Queensland (SEQ), Australia. The dataset is a compilation of approximately 34.8 million

transactions made by a million Smart Cards over 15 thousands transit stops of the bus, city train

and ferry networks in SEQ from 1st March to 30th June 2012. Each transaction contains the

following fields:

1) CardID: Unique Smart Card ID

2) T_on: Timestamp for touch on (boarding)

3) T_off: Time stamp for touch off (alighting)

4) S_on: Station ID at touch on

5) S_off: Station ID at touch off

6) ValidIndicator: A binary indicator for differentiating valid from invalid transactions. It

has been used by the operator for ticketing purpose. Valid transaction is the combination

of a touch on and a touch off from the same transit line, within a 2 hours limit (Translink,

2007). Any cases other than that, e.g. no touch off, or touch off at a different line, etc. are

indicated as invalid transactions. Only around 3% of the transactions are invalid.

7) RouteUsed: The transit line that the passenger has used.

8) Direction: Direction of travel (Inbound/Outbound)

For the current analysis, the study is performed only on working days (weekdays excluding

public holidays and school holidays) because travel behavior on working weekdays can be

significantly different than that of weekends and holidays.

Reconstruction of travel itineraries

The first step in travel pattern analysis is to reconstruct the full travel itinerary from individual

transactions. The flowchart on Figure 1 illustrates the algorithm to connect individual

transactions from each SC user on each working day into completed journeys from first origin

stop to the last alighting stop. The algorithm is built on a binary “ReconstructingIndicator” to

identify on-going/new journey status; and a “JourneyID” to distinguish the completed journeys.

A fixed threshold of 60 minutes is then used to decide if the two transactions are connected. This

threshold has been chosen differently in the literature (Seaborn et al., 2009). The 60 minutes is

chosen in accordance with Brisbane’s public transport threshold for continuation journeys

(Translink, 2007). Here, the first origin stop and the last alighting stop of a completed journey

are defined as the “origin stop” and the “destination stop”, respectively. The following 4 steps

describe the journey reconstruction process.

1) STEP 1: A binary ReconstructingIndicator is defined and assigned as zero.

2) STEP 2: The ValidIndicator is checked. If the indicator is equal to 0 (which denotes an

invalid transaction) the corresponding journey will be discarded.

3) STEP 3: If ReconstructingIndicator is zero, a variable OriginLocation is defined and set

as equal to the current T_on. We also assign a new unique JourneyID, change

ReconstructingIndicator to one, save the current transaction and move to the next

transaction.

If ReconstructingIndicator is one and the time gap between the current T_on and the last

T_off is less than 60 minutes, we move to Step 4.

If the time gap is more than 60 minutes, transactions with previous JourneyID is

connected into a completed journey. New JourneyID and OriginLocation are assigned, in

which the current transaction is identified as the first leg from the origin stop. The

ReconstructingIndicator is set as 1.

4) STEP 4: If the current S_off is different to OriginLocation, the transaction is connected to

the journey as a continuation journey and we move to the next transaction. If it is the last

transaction of the day, or S_off is equal to OriginLocation, the journey reconstruction

process is completed and we move back to Step 1.

Figure 1 Journey reconstruction flowchart

The four-step process reconstructs full itineraries from AFC data, enables us to observe the

origin-destination locations and journey chains of each individual passenger. Table 2 shows an

example of reconstructed itineraries from two transit passengers in 1
st
 Apr 2012.

Table 2 Example of travel itineraries of two random passengers

Each transaction of

each SC on each

working day

No

Yes

No

Yes

Connect the

transaction into the

Journey

(keep initial

JourneyID)

Transactions database

(Set ReconstructingIndicator as 0)

Yes

Journey

reconstruction

completed

No

Assign new

JourneyID,

OriginLocation,

set

Reconstructing-

Indicator as 1

1

Set

Reconstructing-

Indicator as 0

0 1

0

Discard

correspond-ing

Journey (all

transactions

with current

JourneyID), set

Reconstruct-

ingIndicator as

0

Is the time gap

to previous

transaction less

than 60 mins ?

Check

Reconstructing-

Indicator

Is the

transaction’s

destination

different to the

Origin ?

Is that the last

transaction ?

Check

ValidIndicator

Store completed

Journey, assign

new JourneyID

&

OriginLocation,

set

Reconstructing-

Indicator as 1

Store

completed

Journeys

SC

ID

Day Journey

ID

Origin

Time

(min

from

0h)

Destination

Time

(min from

0h) Stop ID Sequence

Total

travel

time

(min)

Total

transfer

time

(min)

Total

time

(min)

Route ID

Sequence

X1

1

Apr 1697 680.2 686.54 5 4 6.34 0 6.34 999

X1

1

Apr 1083 557 566.9 54371 24653 9.9 0 9.9 726

X2

1

Apr 1415 898.08 905.24 12861 2452 15212 7.16 41.42 48.58 550 562

X2

1

Apr 1412 887.45 944.63 10730 499 88 57.18 32.7 89.88 690 999

The classical DBSCAN algorithm

The existing literature promotes DBSCAN as one of the best solutions for spatial travel pattern

analysis of individual passenger for the following reasons (Kieu et al., 2014; Ma et al., 2013)

1) As mentioned in the Literature review, DBSCAN provides a flexible solution to spatial

travel pattern analysis. DBSCAN identifies clusters of high density and also noise which

does not belong to any clusters. In travel pattern analysis, noise is anomaly pattern and

clusters are the regular spatial travel pattern.

2) DBSCAN identifies cluster of any shape and sizes. In spatial travel pattern analysis, the

clustered transit stops could form any shape and sizes.

3) DBSCAN does not require predetermination of initial cores or number of clusters. This

feature is also very important for travel pattern analysis because the number of patterns

from an individual passenger is unknown.

This section first describes the classical DBSCAN algorithm and thereafter proposes a modified

DBSCAN algorithm to dynamically identify individual travel pattern.

The classical DBSCAN algorithm defines clusters as dense regions, separated by regions of

lower density. The algorithm has two global parameters: the maximum density reach distance 

and the minimum number of points MinPts. We define the  -neighborhood for a point p as the

number of points in the dataset that has distance to p less than , including the point p itself. The

most common distance metric used is the Euclidean distance. Each point in the data set is

classified as:

 Core point: A point is considered as a core point if its  -neighborhood is greater than or

equal to MinPts.

 Border point: A point is considered as a border point if its  -neighborhood is less than

MinPts but the point in itself lies within  -neighborhood of a core point.

 Noise: A point is considered as a noise if it is neither a core nor a border point.

A cluster is defined by combining the core points which are connected by their associated border

points. Interested reader can refer to Ester et al. (1996) for more detailed description of

DBSCAN. Figure 2 provides an example of core, border point and noise in DBSCAN

definitions. The illustrated circles are centered at a point and have a radius of  .Considering

MinPts as 4:

a) Point p1 is a core point because its -neighborhood is four (q1,q3,p2 and p1 itself). It’s a core

point because this  -neighborhood is equal to MinPts. Similarly point p2 is also a core point.

b) Point q1 is a border point because its  -neighborhood is 3 (p1,n1 and q1 itself) and point q1

lies within the  -neighborhood of the core point p1. Similarly point q2 and q3 are border points.

c) Point n1 is the noise because its  -neighborhood is only 2 and it is not within the  -

neighborhood of any core point.

Figure 2 An example to illustrate core point, border point and noise point definitions for

DBSCAN

Kieu et al. (2014) proposed a two-level spatial travel pattern mining procedure from

reconstructed itineraries using the classical DBSCAN algorithm. Figure 3 illustrates this spatial

travel pattern analysis for a random passenger. Here, the O points represent the origin stops and

D points represent the destination stops in the historical itineraries. The two levels are described

as follows

1) Level 1: DBSCAN algorithm clusters origin stops into regular origin stops and

q1

p1

p2

q2

The circles show the maximum density reach distance 

p1,p2 are core points; q1,q2,q3 are border points

and n1 is a noise

MinPts = 4

n1

q3

anomaly origin stops. The DBSCAN algorithm with equals 1000m and MinPts

equals 8 is applied to define Cluster 1 at stop O1, and O2 as anomaly origin stops.

2) Level 2: Among the destination stops of each origin stop, DBSCAN algorithm

differentiates the regular and anomaly destination stops. The same parameters are used

to identify two clusters of destination stops at D1 and D2.

If both origin stop and destination stop are not anomaly pattern, the corresponding OD is

identified as a regular spatial travel pattern. In our example, the OD pairs O1-D1 and O1-D2 are

regular spatial travel patterns. Interested readers can refer to Kieu et al. (2014) for more detailed

explanation of the two-level spatial travel pattern analysis.

Figure 3 Two-step DBSCAN procedure for Regular OD mining

Weighted-Stop Density-Based Scanning Algorithm with Noise (WS-DBSCAN)

DBSCAN provides a good solution to identify spatial travel pattern from passenger historical

itineraries. However, the major disadvantage of the DBSCAN algorithm is its quadratic

computing complexity, which restricts transit operators to update individual travel pattern daily.

DBSCAN takes approximately 25 hours for a Core i5, 8GB Ram personal computer to analyze &

update the individual travel patterns of all passengers who has a transit journey within a day in

SEQ, Australia. It means it took more than a day to update the daily changes in travel pattern,

which would result in a one-day lag in transit operators understanding of their customers.

Although transit authorities could employ a faster computer, running DBSCAN for daily update

of individual travel pattern is an absurd task.

This section develops the theoretical foundation of the Weighted-Stop DBSCAN (WS-DBSCAN)

algorithm to transform the quadratic complex classical DBSCAN to a problem of sub-quadratic

complexity, in particular a combination of linear and quadratic complexity with fewer elements

to detect and update the changes in travel pattern of individual transit passengers. The objective

of WS-DBSCAN is to cluster each studied transit journey St to a spatial travel pattern or anomaly

pattern and update the changes in travel pattern. This section only describes the process of

detecting and updating regular origin patterns – the Level 1 of the two-level travel pattern

analysis described in Figure 3. The Level 2 could be analyzed by WS-DBSCAN using similar

method.

The following three principal features distinct WS-DBSCAN to the classical DBSCAN.

 WS-DBSCAN follows the same two-level analysis process as described in Figure 3, but

instead of finding regular pattern as the first-time analysis like DBSCAN, WS-DBSCAN

utilizes the existing knowledge of individual travel pattern to cluster the studied journey.

Although WS-DBSCAN can also be used for first-time travel pattern analysis, it is best

used for detecting and updating the changes in individual travel pattern.

 DBSCAN performs a neighborhood search from each and every point to decide if the

point is a core, border or noise point. This task has a quadratic programing complexity.

Conversely, WS-DBSCAN only performs neighborhood search when it is necessary

(more details on the WS-DBSCAN algorithm will be demonstrated in Figure 6).

 Most of transit passengers repeatedly board or alight a transit vehicle from a stop. The

classical DBSCAN treats each boarding/alighting as a unique point, which means there

are overlapping points in the dataset. WS-DBSCAN significantly reduces the

computation time by clustering the stops rather than the boarding/alighting itself, and

gives each stop a weight i.e. the number of times the passenger boarded/alighted from

that particular stop.

Following the definitions from the classical DBSCAN paper (Ester et al., 1996), we propose the

basic terminologies for WS-DBSCAN.

Definition 1: The weighted -neighborhood of a transit stop p, denoted by  N p , is defined

by

 
1

,(,) |
n

q p

q

p W W q DN dist p q 


   

Where:

 Wq is the weight of each stop q i.e. number of times the passenger boarded a transit vehicle from

stop q

Wp is the weight of stop p itself,

 ,dist p q is the Euclidean distance between stop p and q and

D is the stop dataset.

Definition 2: A stop p is a core stop if and only if   Mip tsN nP 

If p is a transit stop and the passenger has made more than MinPts number of boarding in a

weighted -neighborhood around p, then p is called a core stop.

Definition 3: A stop q is directly reachable from a stop p wrt  and MinPts, if

1)  q N p , and

2)   Mip tsN nP  (i.e., p is a core stop)

Definition 4: A stop q is a border stop when it is not a core stop, but directly reachable from a

core stop p.

Figure 4 demonstrates an example of core and border stop in WS-DBSCAN. Here for MinPts

equals to 4, stop p1 and p2 are core stops, whereas q1 is a border stop for p1. The arrow illustrates

that q1 is directly reachable from p1, but p1 is not directly reachable from q1. In contrariety, p1

and p2 have two-way directly reachability between them, because both p1 and p2 are core stops

and lie within the  distance of each other. A border point is directly reachable only from a core

point and not from another border point. However, a border point can be directly reachable from

multiple core points.

Figure 4 An example of core stop, border stop and direct reach in WS-DBSCAN

p2

Wp2=3

p1

Wp1=1
q1

Wq1=1

Wpi shows the weight of each stop

The circles show the weighted -neighborhood

p1,p2 are core stops; q1 is a border stop

The arrows show the direct reach from a core stop

MinPts = 4

Definition 5: A stop q is reachable from a stop p wrt  and MinPts if there is a chain of stop

p1,…,pn, p1=p, pn=q such that pi+1 is directly reachable from pi.

Definition 6: A stop p is connected to a stop q wrt  and MinPts if there is a stop o such that o is

reachable from both p and q and vice versa.

Figure 5 shows an example of reachable and connected stops in WS-DBSCAN. Here, p1, p2, p3

and p4 are core points. Pont o1 is a border point to both p1 and p3 and reachable from both p1 and

p3. As indicated in the figure, p1 and p2 are reachable, and p3 and p4 are reachable. Therefore, p2

and p4 are connected through o1.

Figure 5 An example of reachable and connected stops in WS-DBSCAN

Definition 7: A cluster C wrt  and MinPts is a set of stops acting as a regular pattern. A cluster

would have at least one core stop, and satisfy the following conditions:

1) p,q: if p C and q is directly reachable from p wrt and MinPts, then qC

(Maximality)

This condition is to guarantee that all stops within a reachable area are considered in the

same origin pattern. It also denotes that a regular pattern would have at least MinPts

number of journeys, because cluster C would have at least a core stop p and its

corresponding border stops q.

2) p,q C: p is connected to q wrt and MinPts (Connectivity & Uniqueness)

All stops in a cluster are at least connected, if not directly reachable or reachable. This

condition is also to guarantee that two clusters would be distinct and stops from cluster C

would not be connected from another cluster because if any stop is connected from two

clusters, then the two clusters would be clustered as one. Thus any core or border stop

would belong to one and only one cluster.

Definition 8: Anomaly stops wrt  and MinPts are the stops that do not belong to any travel

pattern. They are not directly reachable to any stop. Thus they are not core or border stops, and

vice versa.

p2

Wp2=3

p1

Wp1=1
o1

Wo1=1

p1,p2,p3,p4 are core stops; o1 is a border stop

o1 is reachable from p2 and p4, but p2 and p4 are not

reachable from o1

p2 and p4 are connected by o1

MinPts = 4 p3

Wp3=1

p4

Wp4=3

The WS-DBSCAN algorithm

This section describes the WS-DBSCAN implementation to detect a pattern for an origin stop St

from a newly made journey and update the existing knowledge of passenger P travel pattern. The

detection and pattern update of the destination stop from the same journey is done using similar

method.

The existing travel pattern knowledge has the form of a historical stop database [SH] for

passenger P that stores historical origin stops with their corresponding Weight and ClusterID.

Here, the Weight Wi of each stop Si is the number of times the passenger has boarded a transit

vehicle from that specific stop. Cluster number Ci of each stop i indicates if stop Si is a regular (

0,i iC C  ) or anomaly stops (Ci = -1). Different positive Ci means different regular travel

pattern. Table 3 shows an example of historical stop dataset [SH] and studied stop St.

Table 3 Examples of: a) Historical stop dataset [SH] and b) Studied stop St

a)

Historical origin stops [SH]

Stop Si Weight Wi ClusterID Ci

O1 8 1

O2 2 1

O3 14 2

O4 1 -1

O5 2 -1

b)

Studied new stop [St]

Stop Si Weight Wi ClusterID Ci

St 1 Unknown

WS-DBSCAN detects a travel pattern by assigning a ClusterID for St

 WS-DBSCAN assigns an existing positive ClusterID if St belongs to an existing pattern

 WS-DBSCAN assigns a new positive ClusterID if St together with some other stops in

[SH] form a new pattern

 WS-DBSCAN assigns ClusterID equals -1 if St is an anomaly pattern

After each implementation, WS-DBSCAN increments the corresponding Weights by one and

updates ClusterID according to the assignment of St’s ClusterID. Figure 6 and the following

steps describe the algorithm.

1) STEP 1: The first step is to check the sum of weights of all stops in [SH]

[]

1

| []
H

m

S i H

i

W W i S


 

If
[] 1

HSW MinPts  then we proceed to STEP 2. Else St is stored into [SH] as an anomaly

stop because there is then no possibly for passenger P to have any travel pattern formed.

Here, MinPts-1 is used because the current journey contributes to a weight for the current

stop.

2) STEP 2: If St already belongs to [SH] and has a positive ClusterID Ct. Its Weight Wt in

[SH] is then incremented by one. Else the algorithm proceeds to STEP 3.

3) STEP 3: The following calculations are performed to checks if St could form a cluster

with any stops in [SH]

 Calculate the weighted -neighborhood of St when the dataset is [SH]

1

() 1| [], (,)
n

t q RN t

q

N S W q S dist q S 



   

If ()tN S MinPts  , St is a core stop. There are three possibilities: a) belongs to one

existing cluster; b) belongs to multiple existing clusters; and c) does not belongs to

existing cluster so should be assigned a new cluster number.

a) (),Ct qq N S 

  

If within ()tN S there is only one regular stop q, then St belongs to the

existing cluster of q and is assigned the corresponding cluster number. All

stops within its weighted -neighborhood are also assigned the same cluster

number.

b)
1 2 1 2 n, .. ();C ,C ..C

C C (, {1,2.. })

n t

qj qk

q q q N S

j k n



  

  

If within ()tN S there are multiple regular stops 1 2, .. nq q q (n>1), where at

least there are regular stops j and k belongs to two different clusters

C C (, {1,2.. })qj qk j k n  , we merge their clusters and St to a combined cluster

Cq because by adding St all these stops will be connected (See Definition 7).

All these corresponding stops are then assigned a new combined cluster

number Cq.

c)  (),Ct qq N S 

 

If within ()tN S there is no regular stop, St forms a new cluster with the stops

in its weighted -neighborhood. All these corresponding stops are then

assigned a new cluster number.

The corresponding Weight of St is incremented by one in each of these possibilities.

 If ()tN S MinPts  , St is not a core stop but it could be a border stop if any stop q

within its weighted -neighborhood is a core stop.

1

() | [,]

Where : 1... , (,)

k

r q t H

r

t

N q W W r S S

q n dist S q







  

 



If any ()N q MinPts  , St is then a border stop. Similar to the previous case, St and its

corresponding stops are assigned with an existing or new cluster number.

 If ()N q MinPts  , we can conclude that St is anomaly stop and store it in [SH] with

ClusterID equals -1. The corresponding Weight of St is incremented by one.

Figure 6 WS-DBSCAN algorithm

WS-DBSCAN implementation on full OD pattern detection and update

This section describes the WS-DBSCAN implementation on detecting and updating a full travel

itinerary using an example. Figure 7 shows WS-DBSCAN implementations on the journeys the

passenger P made within the day d.

Studied stop

St

Assign St to existing

cluster

NO

Store St as anomaly stop (Ct= -1)

Assign St and N (q) to

existing cluster

Historical stop database [SH]

Step 3

Step 2

q'' ();Cq N q

  

1 2 1 2 n, .. ();C ,C ..C

C C (, {1,2.. })

n t

qj qk

q q q N S

j k n



  

  

Merge n existing

clusters, assign St to

the combined cluster

Assign new cluster

number

(),Ct qq N S 

  

[,] 1
R NS SW MinPts 

YES

t[],Ct HS S  
YES

NO

()tN S MinPts 
YES

()N q MinPts 

NO

YES

NO

Step 1
Store St as anomaly

stop (Ct= -1)

 (),Ct qq N S 

 

 q'' ();Cq N q

 

Figure 7 An example of WS-DBSCAN implementation

WS-DBSCAN requires two types of input:

 Input 1 is the historical itineraries database that stores the historical origin stops,

destination stops; and a spatially regular OD database that stores the full OD

itineraries. Each historical origin and destination stop is associated with a Weight and

a ClusterID. Cluster number differentiates the regular origin/destination patterns and

anomaly pattern. Each OD itinerary in the Spatially OD pattern database is also

associated with a Weight, a variable OD pattern and a binary variable indicating

regular/anomaly OD pattern. The OD pattern stores the Cluster numbers of both

origin and destination stop in the format [OClusternumber;DClusternumber].

Here O1 and O2 both belong to origin cluster 1, so both O1-D1 and O2-D1 have [1;1]

for their OD pattern. We define an OD pattern i as a regular OD pattern if the total

Weight of its OD Pattern is larger than MinPts.

 Input 2 is the journeys that passenger P made during the studied day, where P made

three journeys within the day d in this particular example. Each OD itinerary in Input

2 is fed into the WS-DBSCAN algorithm. Here, passenger P made 3 journeys O1-D1,

O1-D3 and O4-D1 during the study day d.

WS-DBSCAN provides two sets of output. While Output 1 represents the pattern detection,

Output 2 represents the pattern update feature of WS-DBSCAN.

 Output 1 is the assigned cluster number of each itinerary in Input 2. Here O1, D1 and D3

are identified as regular stops and O3 as anomaly stop.

 Output 2 takes Output 1 results and shows the updated spatial travel pattern in terms of

origin/destination and OD pattern. Here among the three journeys passenger P made

within the day d, O1-D1 is clearly a spatial regular OD pattern and O4-D1 and O5-D4 are

clearly an anomaly patterns. Although both O1 and D3 are regular stops, the pair O1-D3

is an anomaly pattern because its OD Pattern does not have a Weight higher than MinPts.

Numerical experiment

This section validates the applicability of WS-DBSCAN to the real data, in comparison with the

classical DBSCAN algorithm.

Experiment setup

The numerical experiment is set to emulate a working environment to compare the performance

of classical DBSCAN and WS-DBSCAN. The last working week (Monday to Friday) of June,

2012 has been used as the testing dataset, whereas the other weeks acted as the historical

itineraries data. The experiment emulates a working environment by the following three steps

1) At the end of each day in the testing dataset (last working week of June 2012), we collect

all Smart Card transactions of the day

2) The algorithm illustrated in Figure 1 reconstructs individual transactions into passenger

itineraries

3) The classical DBSCAN and WS-DBSCAN analyzes the studied day itineraries and

relates with the historical itineraries data to detect and update the travel pattern. The

implementation of DBSCAN and WS-DBSCAN has been described in Figure 3 and

Figure 7, respectively.

We adopt the same example of detecting and updating passenger P travel pattern after day d in

Figure 7 to compare the two algorithms. While Input 1 and Input 2 in Figure 8 are fed into WS-

DBSCAN, historical OD journeys similar to Table 2 and Input 2 are fed into DBSCAN.

Experiment results

Table 4 shows the comparison between the time efficiency of DBSCAN and WS-DBSCAN. We

compare the two performances by calculating the ratio between WS-DBSCAN computation time

and DBSCAN computation time.

100%WSDBSCAN
t

DBSCAN

t
Q

t
 

Where tDBSCAN and tWSDBSCAN are the computation time of the DBSCAN and WS-DBSCAN

implementation, respectively.

Table 4 Computation time comparison of DBSCAN and WS-DBSCAN to detect and

update each studied journey.

Algorithms Mean(s) Median(s) Mean Regular Detection(s) Mean Anomaly Detection(s)

DBSCAN 223.34 10

223.23 10

223.52 10
222.72 10

WS-DBSCAN 410.78 10

410.47 10

410.23 10
411.17 10

Qt 0.46% 0.45% 0.43% 0.49%

Mean and Median of computation time are for a two-level analysis detection & update for a studied journey in the testing dataset in seconds. The

time is counted from an itinerary is presented, until the update process is completed.

WS-DBSCAN costs only around 0.46% in computation time compared to the classical

DBSCAN, while provides the same mined travel pattern results as DBSCAN by sharing the

same clustering method and parameters. Table 5 shows the observed computation time for

detecting and updating the travel pattern of all passengers travelled on each day from 18
th

 to 22
nd

June 2012.

Table 5 Travel pattern detecting and updating time for each testing day

Day 18
th
 Jun 19

th
 Jun 20

th
 Jun 21

st
 Jun 22

nd
 Jun

DBSCAN 23.59 24.79 25.29 25.72 25.30

WS-DBSCAN 0.11 0.11 0.12 0.12 0.12

Qt 0.46% 0.44% 0.47% 0.47% 0.47%

Computation time is counted in hours. The analysis has been performed on all travelled passengers on each day

While DBSCAN took approximately a day to detect and update the changes in spatial travel

pattern of all passengers travelled on each testing day, WS-DBSCAN takes 6-7 minutes of

computation time. Figure 8 illustrates the computation time of WS-DBSCAN when the

passenger has different number of journeys and number of OD pairs in the historical dataset. The

computation time varies from 48.5 10 to 412.5 10 seconds. The WS-DBSCAN is exceptionally

fast when the number of journeys in the historical dataset is large and the number of OD pairs is

small. The algorithm provides a decision in the shortest time when the number of journeys is less

than MinPts, because the studied journey is definitely an anomaly pattern. The algorithm is only

slightly slower for passengers whose the number of journeys is close to the number of OD pairs.

These passengers only account for less than 3% of the population.

Figure 8 WS-DBSCAN computation time

WS-DBSCAN time-effectiveness is further illustrated in comparison with the DBSCAN

computation time. Figure 9(a) shows that DBSCAN cost more as the number of journeys

increases, reflecting its quadratic computation complexity. The difference between the

computation time of DBSCAN and WS-DBSCAN algorithm on the same problem is

demonstrated in Figure 9(b). The figure shows that the time savings by using WS-DBSCAN

instead of DBSCAN is greater as the number of journeys is getting larger.

(a)

(b)

Figure 9 DBSCAN computation time: a) in seconds, b) in comparison with WS-DBSCAN

The numerical experiment demonstrates that WS-DBSCAN is more than 200 times faster while

provides the same travel pattern analysis as DBSCAN.

Sensitivity analysis of WS-DBSCAN parameters

WS-DBSCAN requires the same set of parameters same as in DBSCAN: the minimum number

of journeys MinPts and the density reach distance  . These parameters decide the detection

result in WS-DBSCAN and DBSCAN which have to be chosen carefully before implementation.

The maximum density reach distance  denotes the walking distance of the passenger from one

to another stop of the same journey pattern. For instance a student might randomly board from

stop A or stop B to travel to school, and  is the distance between these two stops. The Transit

Capacity and Quality of Service Manual shows that 90% of passengers would walk less than

500m to transit stops (TRB, 2013). If we increase , more stops will be considered as regular

origin stop. should not be too large since both origin and destination might be clustered into the

same boarding pattern if  is larger than the travel distance.  can be found by travel survey and

vary from case to case. Burke and Brown (2007) found that people in Brisbane and Perth,

Australia walk significantly longer than people in US cities. The definition of  is then not

simply the walkable area but for each passenger it is the “preferable walking distance” or

“activity area”. The value of could be different for passengers who prefer long and short walk.

The examination of MinPts can be broken down into how transit operators define travel pattern.

Given the number of journeys over a study period, MinPts is equal to the minimum journeys

made to be considered as “regular”. As MinPts increases, less journeys are identified as regular

travel patterns. A value of MinPts equal to 2 means that any repeated boarding will be

considered as regular. Figure 10 illustrates the MinPts and sensitivity analysis results. The

figure provides guidance on how to define spatial travel pattern.

Figure 10 Sensitivity analysis of MinPts and

MinPts should also be chosen considering the observation period of historical itineraries data. As

the number of the total journeys increases as the observation period becomes longer, the value

MinPts is only valid for a specific period. Figure 11 demonstrates the percentage of regular

journeys at different period when MinPts varied from 2 to 16, and is equal to 1000 m.

Figure 11 Sensitivity analysis of MinPts at different observation period

Different values of MinPts have been used on the whole dataset (Mar to Jun 2012) and two

shorter periods (Mar to Apr 2012 and May to Jun 2012). Shorter observation periods show lower

share of regular journeys, especially when MinPts becomes larger. It is because there are less

spatial travel patterns that are repeated for more than MinPts times within a shorter period. In

20

25

30

35

40

45

50

55

60

65

70

2 4 6 8 10 12 14 16

P
er

ce
n
ta

g
e

o
f

re
g
u
la

r
jo

u
rn

ey
s

(%
)

MinPts

Mar-Jun

Mar-Apr

May-Jun

practice the observation period should be fixed and should not be too long, because passenger

travel pattern can change significantly during a long time period. The historical itineraries data

can be store for a period of several months in a rolling horizon process, i.e. detecting and

updating the passenger individual travel pattern data in each period. Figure 11 also shows that

the regular journeys shares are similar at different MinPts when the observation periods are

equal.

DBSCAN and WS-DBSCAN provide exactly the same travel pattern analysis results when using

the same set of parameters (MinPts and ). The accuracy of these algorithms when compared to

the actual transit passenger travel pattern solely depends on these parameters. A short survey

could solve the problem of choosing the best parameters or validate the mining results. In the

meantime, the sensitivity analysis of MinPts and as discussed in this paper provides insights

into the sensitivity of these parameters.

Conclusion

This paper proposes the Weighted-Stop DBSCAN (WS-DBSCAN) algorithm to detect and

update spatial travel pattern in much less computation time than the classical DBSCAN

algorithm. Compared to the classical DBSCAN, the proposed WS-DBSCAN algorithm has a

logical mechanism suited for transit spatial travel pattern analysis. Each stop in the historical

dataset is given a weight to reduce the neighborhood search, and only and only perform

compulsory neighborhood search. WS-DBSCAN also embraces the existing knowledge of

individual passenger to reduce travel pattern analyzing time. WS-DBSCAN on average detects

and updates a new transit journey in 0.45% of what it costs for classical DBSCAN.

The methodology presented in this paper assists transit operators to observe and record the daily

changes in individual travel pattern. While the classical DBSCAN takes 24-25 hours for a travel

pattern analysis of all travelled passengers for a day, WS-DBSCAN takes less than 7 minutes to

perform the same analysis. WS-DBSCAN enables transit agencies to use individual travel

pattern on a daily basis, such as in customized service provision and operational strategy.

Although larger dataset than the SEQ would definitely take more time for a complete analysis,

employing multiple computers to analyze each passenger segment would easily solve this

problem.

The introduction of WS-DBSCAN also enables us to investigate the possibility of using travel

pattern data in real-time. Although most of the Smart Card systems are not associated with user

contact information, individual travel pattern can be stored through Smart Card ID. Transit

passengers can use a smartphone application to get customized real-time information from

service providers for the service they regularly use. The information is given though the input of

Smart Card ID and a proof-of-card ownership by the barcode behind each card. By managing the

customized information by the unique Smart Card ID, the information and service can remain

oriented for each individual and at the same time, maintain privacy. However, various practical

issues have to be solved before individual travel pattern can be used in real-time, such as the

computation & telecommunication constraints, which information to be given and who to be

enrolled in the system. These problems lay out immediately accessible avenues for future

research. In the meantime, WS-DBSCAN can be used to detect and update individual travel

pattern for much less cost than the classical DBSCAN.

WS-DBSCAN algorithm focuses only on spatial travel pattern analysis. Temporal and spatial

travel pattern can also be simultaneously analyzed in a two-step approach, where the data is first

clustered into temporal travel pattern based on the time of the day and thereafter, within the time

period spatial pattern can be evaluated. An extension of WS-DBSCAN to consider the temporal

attributes will reduce the analysis sample size and reveals temporal travel pattern. The joint

consideration of spatial and temporal travel pattern is also a future research direction.

Acknowledgment

This research is supported by Queensland University of Technology. The AFC data used in this

study was provided by Translink, the transit authority of South East Queensland, Australia. The

authors would like to thank the two anonymous referees and the Editor-in-Chief of

Transportation Research Part C for their critical comments. The conclusions in this paper reflect

the understandings of the authors, who are responsible for the accuracy of the data.

Reference

Burke, M., Brown, A., 2007. Distances people walk for transport. Road & Transport Research: A

Journal of Australian and New Zealand Research and Practice 16(3), 16.

Chu, K.K.A., Chapleau, R., 2010. Augmenting Transit Trip Characterization and Travel

Behavior Comprehension: Multiday Location Stamped Smart Card Transactions. Transportation

Research Record: Journal of the Transportation Research Board 2183(1), 29-40.

Chu, K.K.A., Chapleau, R., Trepanier, M., 2009. Driver-Assisted Bus Interview. Transportation

Research Record: Journal of the Transportation Research Board 2105(1), 1-10.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., 1996. A Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise, Second international conference on knowledge

discovery and data mining. Amer Assn for Artificial, p. 226.

Hasan, S., Schneider, C., Ukkusuri, S., González, M., 2013. Spatiotemporal Patterns of Urban

Human Mobility. J Stat Phys 151(1-2), 304-318.

Jang, W., 2010. Travel time and transfer analysis using transit smart card data. Transportation

Research Record: Journal of the Transportation Research Board 2144(1), 142-149.

Kieu, L.M., Bhaskar, A., Chung, E., 2014. Passenger Segmentation Using Smart Card Data.

IEEE Transactions on Intelligent Transport System (In Press).

Lee, S., Hickman, M., 2013. Are Transit Trips Symmetrical in Time and Space? Transportation

Research Record: Journal of the Transportation Research Board 2382(-1), 173-180.

Lee, S., Hickman, M., 2014. Trip purpose inference using automated fare collection data. Public

Transp 6(1-2), 1-20.

Lee, S.G., Hickman, M., Tong, D., 2012. Stop Aggregation Model. Transportation Research

Record: Journal of the Transportation Research Board 2276(1), 38-47.

Ma, X., Wu, Y.-J., Wang, Y., Chen, F., Liu, J., 2013. Mining smart card data for transit riders’

travel patterns. Transportation Research Part C: Emerging Technologies 36, 1-12.

Morency, C., Trepanier, M., Agard, B., 2007. Measuring transit use variability with smart-card

data. Transport Policy 14(3), 193-203.

Pelletier, M.P., Trépanier, M., Morency, C., 2011. Smart card data use in public transit: A

literature review. Transportation Research Part C: Emerging Technologies 19(4), 557-568.

Seaborn, C., Attanucci, J., Wilson, N., 2009. Analyzing Multimodal Public Transport Journeys in

London with Smart Card Fare Payment Data. Transportation Research Record: Journal of the

Transportation Research Board 2121(-1), 55-62.

Translink, 2007. How to use your go card on the TransLink network: TransLink go card user

guide (part 1 of 2).

TRB, 2013. Transit Capacity and Quality of Service Manual 3rd Edition. Transportation

Research Board.

Utsunomiya, M., Attanucci, J., Wilson, N., 2006. Potential Uses of Transit Smart Card

Registration and Transaction Data to Improve Transit Planning. Transportation Research Record:

Journal of the Transportation Research Board 1971(-1), 119-126.

View publication statsView publication stats

https://www.researchgate.net/publication/274009679

