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Passenger Segmentation Using Smart Card Data
Le Minh Kieu, Ashish Bhaskar, and Edward Chung

Abstract—Transit passenger market segmentation enables tran-
sit operators to target different classes of transit users for tar-
geted surveys and various operational and strategic planning
improvements. However, the existing market segmentation studies
in the literature have been generally done using passenger surveys,
which have various limitations. The smart card (SC) data from
an automated fare collection system facilitate the understanding
of the multiday travel pattern of transit passengers and can be
used to segment them into identifiable types of similar behaviors
and needs. This paper proposes a comprehensive methodology
for passenger segmentation solely using SC data. After recon-
structing the travel itineraries from SC transactions, this paper
adopts the density-based spatial clustering of application with
noise (DBSCAN) algorithm to mine the travel pattern of each SC
user. An a priori market segmentation approach then segments
transit passengers into four identifiable types. The methodology
proposed in this paper assists transit operators to understand their
passengers and provides them oriented information and services.

Index Terms—Automated fare collection (AFC) system, mar-
ket segmentation, public transport, smart cards (SCs), transit
passenger.

I. INTRODUCTION

B ETTER understanding of passengers is essential for transit
authorities to satisfy customer needs and preferences.

The Transportation Research Board has published a hand-
book on using market segmentation to increase patronage [1].
Most transit operators have defined classes of customers but
not market segments. For instance, operators in South East
Queensland (SEQ), Australia, classify passengers into six types
(adult, senior, child, pension, secondary school student, and
student) according to age and occupation. Although this clas-
sification is still useful for fare collection, whether these types
differently respond to alternative services and whether new
policies benefit them is unknown.

Despite the high exposure to transit passengers, transit
providers have limited knowledge about their customers due to
reasons such as the anonymity of passengers, the stochasticity
of their behaviors, and the complexity in analyzing the disag-
gregated information of a massive population. Future impacts
of the proposed initiatives to existing and latent passengers are
obscure due to the lack of knowledge on their mobility re-
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quirements and travel behaviors. Existing service improvement
projects are limited to the impacts on generic transit customers,
neglecting the differences between the types or segments of
passengers with different needs and behaviors. Paradoxically,
the majority of studies in public transport solely focus on
improving a vehicle’s performance, such as the travel time
or schedule adherence, without a profound understanding of
passenger segments and behaviors, notwithstanding the fact that
different segments of passengers would behave differently in
a transit system. For instance, an irregular transit passenger
would be more concerned with the service coverage, i.e., if
s/he would be able to travel by public transport to the desired
destination, whereas a commuter transit rider user would be
more concerned with the on-time performance and the easiness
of transfers.

One of the dominant factors that dictate the level of passenger
characterization is the availability of data. Traditional studies
on passenger travel patterns and passenger segmentation solely
focus on the use of transit user surveys [1]–[3]. These surveys
are generally expensive to perform, are limited in sample size,
and are only valid within the study period. Transit agencies are
at a critical transition in data collection technology from man-
ual data collection toward automated data collection systems
(ADCSs). Manual data collection systems with a low cap-
ital cost but a high marginal cost, small sample sizes,
and sometimes unreliable accuracy are being replaced by
a low marginal cost, large sample sizes, and disaggregated
ADCSs. ADCSs such as automatic vehicle location, automatic
passenger counter, automatic vehicle identification, and, par-
ticularly, smart card (SC) automated fare collection (AFC)
systems have only recently become widely popular for collec-
tion and analysis. The proliferation of these modern technolo-
gies provides a tremendous opportunity to analyze the existing
condition of transit quality of service and facilitates agencies
to enhance the service quality. Public transport agencies that
are able to take advantage of this massive amount of data to
anticipate and actively react to the changes in the transport
environment and passenger behaviors would earn an utmost
advantage to attract customers. The Brisbane City Council
Transport Plan for Brisbane, Australia [4], emphasizes the use
of data to ensure that the strategies are effective to augment
the transit experience and provides a demand-responsive transit
system.

This paper augments the transit passenger characterization
by passenger segmentation using the dynamic SC data. The
segmentation aims to group passengers of similar travel pattern,
i.e., with the same level of transit journeys at regular times and
places. The market segmentation of transit passengers brings
various benefits to transit authorities to better cater to their
customers. A targeted survey could aim for the passengers of
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low transit usage to understand the disutility that limits the level
of ridership. Before–after studies could observe the changes in
the passenger market to understand the evolution of passenger
demand. Incentives and personalized service can be given to
passengers of regular usage to encourage passengers to use
public transport. The observation of the travel pattern also
benefits operational strategies such as transfer coordination and
origin–destination (OD) demand management by monitoring
and inferring passenger movements through their travel habits.

The contribution of this paper is a systematic approach to
mine the travel pattern and segment transit passengers solely
using SC data. After the literature review in Section II, this pa-
per reconstructs the completed “journey” of SC users from in-
dividual SC “transactions” in Section III-B. Each “transaction”
includes both the boarding and alighting times and stop IDs
of a transit journey between a touch on and a touch off to
the ticketing device. Each “journey” is defined as the public
transport travel from an origin to a destination, including the
transfers, which might include one or several transactions. In
Section III-C and D, a density-based clustering algorithm is
adopted to mine the travel pattern from each SC user’s historical
itineraries and to identify the spatial OD that the cardholder
usually travels as “regular OD” and the time of regular travels
as “habitual time.” SC users are segmented into different classes
using the mined travel pattern by the a priori market segmen-
tation approach in Section III-E. The analysis of segmentation
results in Section IV reveals interesting travel behaviors from
each segment. Finally, after the discussion of potential practical
applications in Section V, the conclusion sums up this paper.

II. RELATED STUDIES

The intelligent transportation system AFC system using SCs
collects large volumes of individual travel data and facilitates a
large-scale, economical, and continuous method to explore the
multiday behaviors of transit passengers. An emerging number
of recent studies have been published using SC data, where
the authors have connected individual SC boarding/alighting
records to reconstruct user itineraries [5]–[7]. Most of the
studies also added a multiday dimension to explore the travel
pattern or repeated travel patterns of each SC user [5], [6],
[8]. The literature of travel pattern mining using SC data
has evolved from an aggregated to a disaggregated level of
passenger analysis. Existing studies have been looking at a
general transit passenger (the whole data set) [6], [9] to a group
of passengers (passengers of similar characteristics) [10]–[12]
and, finally, to individual passengers [5]. The proliferation
of computing power is probably the reason for this trend.
Although aggregated travel pattern analysis provides insights
into the travel pattern of a general user, it fails to capture the
individuality of travel behavior. Moreover, the typologies of
trips and passengers are predefined, which might not reflect
the similarity of passengers between the same class and the
difference between classes.

Another trend in travel pattern analysis is the development
of pattern discretization. Spatial travel pattern analysis often
breaks down to stop-to-stop repeated trips [6], [9], [12]. The
limitation of this method has been identified by several authors

[13]. A transit stop is usually only linked with a single direction
or route, whereas transit passengers normally have several route
choice options within their OD locations. Any stops within
the immediate vicinity that provide the same access should be
considered in the same travel pattern because transit passengers
might pick randomly or might pick the first arriving vehicle.
Different aggregation approaches have been recently proposed
to group spatially close stops into the same travel pattern. Chu
and Chapleau [5] aggregated stops within 50 m of each other
to form a new node. Lee et al. [14] and Lee and Hickman [13]
proposed a stop aggregation model to group stops according to
their proximity, descriptions, and catchment areas.

The problem of temporal travel pattern analysis has not
received much attention as a spatial travel pattern. The existing
discretization of time usually breaks down to either a number
of predefined time windows (e.g., the 1-h period in [12]) or
the time of the day (e.g., A.M. peak, midday, and P.M. peak
in [5] and [11]). A temporal pattern is defined if the passenger
repeatedly made multiple trips within a time period. It is
strenuous to discretize the temporal pattern for individual pas-
sengers because different people would have different habitual
behaviors. For instance, a 1-h time window may segregate the
journeys at 9:59 A.M. to the journeys at 10:01 A.M., although
these journeys come from the same temporal behavior.

A decent amount of research has also segmented transit
passengers based on travel behaviors for fare elasticity [2] or
increasing transit patronage [1], [3]. Elmore-Yalch [1] outlined
three major approaches for transit passenger segmentation:
1) physical segmentation based on basic information such
as demography, geography, and geodemographics; 2) product
usage segmentation based on ridership such as the frequency of
use; 3) physiological segmentation based on the characteristic
of individual passengers; and 4) benefit segmentation based on
passenger requisite. Hensher [2] segmented the transit customer
market into four classes of nonconcession and concession pas-
sengers traveling long or short trips to estimate fare elasticity.
Shiftan et al. [3] proposed a structural equation modeling ap-
proach to segment transit passengers according to the sensitivity
to time, the need for a fixed schedule, and the willingness to use
transit.

III. METHODOLOGY

This section introduces the data set used for the case study
(see Section III-A), as well as the methods for the recon-
struction of travel itineraries (see Section III-B), travel pattern
analysis (see Section III-C and D), and passenger segmentation
(see Section III-E).

A. Data Set

The SC data used in this paper come from Translink, which
is the transit authority of SEQ, Australia. The data set is a
compilation of around 34.8 million transactions made by a
million SCs over 15 000 transit stops of the bus, city train, and
ferry networks in SEQ from March 1, 2012 to June 30, 2012.
Each transaction contains the following fields.

1) CardID: The unique SC ID, which has been hashed into a
unique number to maintain the privacy of the cardholder.
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2) T_on: The timestamp for touch on.
3) T_off: The time stamp for touch off.
4) S_on: The station ID at touch on.
5) S_off: The station ID at touch off.
6) ValidIndicator: A binary indicator for differentiating a

valid or invalid transaction. It has been used by the
operator for ticketing purposes. A valid transaction is the
combination of a touch on and a touch off from the same
transit line within a 2-h limit [15]. Any cases other than
that, e.g., no touch off, touch off at a different line, etc.,
are indicated as invalid transactions. Only around 3% of
the transactions are invalid.

7) RouteUsed: The transit line that the passenger has used.
8) Direction: The direction of travel (inbound/outbound).
9) Fare: The fare paid for the transaction in Australian

dollars.
For the current analysis, the study is only performed on

working days (weekdays, excluding public holidays and school
holidays) because the travel behavior on working weekdays can
be significantly different than that on weekends and holidays.

B. Reconstruction of Travel Itineraries

The first step to mine the travel pattern is through re-
constructing the travel trip from individual transactions. The
flowchart in Fig. 1 illustrates the algorithm to connect the
individual transactions from each SC user on each working
day into completed trips. The algorithm is built on a binary
ReconstructingIndicator to identify the ongoing/new trip status
and on a TripID to differentiate the completed trips.

A fixed threshold of 60 min is then used to decide if the two
transactions are connected. This threshold has been differently
chosen in literature [7]. Sixty minutes is chosen in accordance
with Brisbane’s public transport threshold for transferring
trips [15].

Here, the first boarding stop and the last alighting stop of a
completed trip are defined as the “origin stop” and the “desti-
nation stop,” respectively. The gap between the alighting time
of a transaction and the boarding time of the next transaction of
the same trip is defined as the transferring time. The following
four steps describe the trip construction process.

1) STEP 1: A binary ReconstructingIndicator is defined and
assigned as 0.

2) STEP 2: The ValidIndicator is checked. If the indicator
is equal to 0 (which denotes an invalid transaction), the
corresponding trips will be discarded.

3) STEP 3: If the ReconstructingIndicator is 0, a variable
OriginLocation is defined and set as equal to the current
T_on. We also assign a new unique TripID, change the
ReconstructingIndicator to 1, save the current transac-
tion, and move to the next transaction.

If the ReconstructingIndicator is 1 and the time gap
between the current T_on and the last T_off is less than
60 min, we move to Step 4.

If the time gap is more than 60 min, the transaction
with the previous TripID is connected into a completed
trip. A new TripID and a new OriginLocation are as-
signed, in which the current transaction is identified as

Fig. 1. Trip reconstruction flowchart.

the first leg from the origin stop. The ReconstructingIndi-
cator is set as 1.

4) STEP 4: If the current S_off is different to the Origin-
Location, the transaction is connected to the trip as a
continuation journey. If it is also the last transaction of
the day, the trip reconstruction process for the study
passenger is finished; otherwise, we move to the next
transaction.

C. Mining Spatial and Temporal Pattern From
Travel Itineraries

This section presents the method to mine the spatial and
temporal travel pattern from the historical trip database. The
spatial OD stops are represented as geographical coordinates
(geographical position), whereas the temporal boarding and
alighting times are represented as timestamps. We adopt a
density-based clustering algorithm because of the following
reasons.

1) Density-based algorithms identify clusters of high density
and noise of low density. In travel pattern analysis, noise
is an anomaly travel pattern that does not follow any
regular travel pattern or, in other words, trips that are
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randomly made. Our goal is to find the clusters (regular
pattern) and differentiate it with the anomaly pattern.

2) Density-based algorithms can identify a cluster of any
shape and size. A travel pattern could also form any shape
and size due to its nature of human behavior pattern.

3) Density-based algorithms do not require the predetermi-
nation of initial cores or the number of clusters. This
feature is also essential for travel pattern analysis because
the number of patterns from an individual passenger is
unknown.

4) Discretization is a major concern in travel pattern anal-
ysis. The existing literature has showed that there is a
need for a systematic and flexible solution to spatial and
temporal pattern analysis without limiting to stop-to-stop
repeated trips and time-window discretization. Density-
based scanning algorithms systematically produce a flex-
ible range of high density for each passenger’s spatial and
temporal travel pattern.

A decent number of density-based clustering algorithms such
as the density-based spatial clustering of application with noise
(DBSCAN) [16] and more complex methods such as ordering
points to identify the clustering structure (OPTICS) [17] and
density-based clustering (DENCLUE) [18] can be found in
literature. DBSCAN is then chosen as the algorithm to use in
this paper because of its high computing performance to handle
a large data set with over a million SC users and because it
has all of the four aforementioned features of a density-based
clustering algorithm.

1) DBSCAN Algorithm: The DBSCAN algorithm defines
clusters as dense regions, which are separated by regions of
a lower point density. The algorithm has two global parame-
ters: the maximum density reach distance ε and the minimum
number of points MinPts. A point can be considered a “core
point” ic if it has at least MinPts (density) within a radius ε, as
expressed in

∣∣Nε(ic)

∣∣ ≥ MinPts (1)

where Nε(ic) : {i points in the data set | d(ic, i) ≤ ε}.
Nε(ic) is the number of points i in the data set that has a

distance to ic that is d(ic, i) less than ε. The most common
distance metric used is the Euclidean distance.

A point can be considered a “border point” ib if it has fewer
points than MinPts within ε but lies within the range ε of a core
point. A point is considered a “noise point” in if it is neither a
core nor a border point. A cluster is defined by combining the
core points ic that are not more than ε distance apart, along with
their associated border points ib.

For a more detailed description of DBSCAN, see [16]. The
algorithm is separately applied for mining the spatial and
temporal patterns, in which the regular ODs are derived by a
two-level DBSCAN application: first on the historical alighting
stops and second on the boarding stops. The order of the two
levels is interchangeable without changing the results. The
separate application of DBSCAN increases the robustness of
the overall clustering algorithm, and the outcomes of each level
are useful for later passenger segmentation.

Fig. 2. Two-step DBSCAN application for regular OD mining.

2) Mining Spatial Travel Pattern (Regular OD): This sec-
tion describes the mining process for regular ODs. A two-step
procedure is applied to separately mine the regular last alighting
and first boarding stops of each SC user. Fig. 2 illustrates the
process of mining the travel pattern of an SC user on morning
trips as an example for explaining the clustering method. Here,
the A points represent the first boarding stops; the C points, the
last alighting stops; and the B points, the transfer stops in the
SC user’s historical itineraries. The two levels of DBSCAN
application are described in the following steps.

Level 1: The first level of DBSCAN only groups the last
alighting stops (the C points). It is important to notice that, for
underlying the recurring patterns, each trip’s last alighting stop
is considered a point in the database. In Fig. 2, the 42 trips made
at the same stop C1 form 42 points at the same coordinates. The
DBSCAN algorithm with ε equals 1000 m and MinPts equals 8
is applied to define Cluster 1 at stop C1 and the other two points
as the anomaly pattern.

Level 2: Now, if we locate the origin stops (Stop A) and
the transfer stops (Stop B), the travel pattern can be identified.
The second level of the DBSCAN algorithm only groups the
origin stops (the A points). The same algorithm is used to
identify two clusters of boarding stops at A1 and A2.

If both the origin stop and the destination stop are not
anomaly patterns, the corresponding OD is identified as a
regular OD. In our example, the OD pairs A1–C1 and A2–C1
are regular ODs.

3) Mining Temporal Travel Pattern (Habitual Time): This
section presents the application of DBSCAN to mine the
habitual time, i.e., the time an SC user habitually boards a
transit vehicle. Each journey has been stored as a timestamp
record, i.e., minutes from midnight (0:00), e.g., a timestamp of
480 min is 8 A.M. The existing studies in the temporal travel
pattern analysis would break down the time axis to either a
number of predefined time windows (e.g., 1 h) or the time
of the day (e.g., A.M. peak, midday, and P.M. peak). These
time windows cannot suit everyone because each passenger has
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TABLE I
EXAMPLE OF TRAVEL PATTERN: (a) REGULAR OD

AND (b) HABITUAL TIME

different travel behaviors. More importantly, a temporal pattern
could be separated at the border of two time windows.

DBSCAN offers a systematic and flexible method to find
the area of high density in a 1-D time axis. For this paper, we
applied DBSCAN in the temporal travel pattern analysis, with ε
equals 5 min and MinPts equals 6. We would see, for instance,
a passenger with two journeys at 8:00 A.M., three journeys at
8:04 A.M., and one journey at 7:56 A.M. that were grouped
into a temporal pattern. Given that the reliability of the travel
time during peak periods can have an impact on the alighting
time, the boarding time is chosen instead of the alighting time
for the DBSCAN application because the SC users can actively
choose the boarding time but the time when they arrive at the
destination.

Table I presents an example of three SC users’ travel regular-
ity, in which passenger X2 was chosen as the example in Fig. 2.

D. Sensitivity Analysis of MinPts and ε

The application of DBSCAN requires two important param-
eters: the minimum number of boardings MinPts and density
reach distance ε.

For the spatial travel pattern analysis, the maximum density
reach distance ε denotes the walking distance of the passenger
from one to another stop of the same boarding pattern. ε can be
found by a travel survey and varies from case to case. Burke and
Brown [19] found that people in Brisbane and Perth, Australia,
significantly walk longer than people in U.S. cities, where a
rule of thumb of 500 m has been usually used to measure the
preferable walking distance to transit stops [20]. If ε increases,
the algorithm would define more stops as regular. ε should not
be too large since the OD of the transit trip might be clustered
into the same boarding pattern if ε is larger than the travel
distance.

Fig. 3. MinPts and ε sensitivity analysis for regular OD mining.

Fig. 4. Percentage of passengers with a regular OD but who traveled less than
ten times.

The examination of MinPts can be broken down into how
transit operators define the travel pattern. Given the number of
boardings over a study period, MinPts is equal to the minimum
boarding made to be considered “regular.” For instance, a value
of MinPts equal to 2 means that any repeated boarding will be
considered regular. Fig. 3 illustrates the MinPts and ε sensitivity
analysis results.

The percentage of regular journeys noticeably increases
when ε increases from 400 to 600 m because most passengers
would prefer walking within these distances. Another signifi-
cant increase could be seen when ε exceeds 1200 m, where the
OD is grouped into the same pattern. The value ε that is chosen
for this paper is 1000 m.

We choose the value of MinPts to maximize the proportion of
the regular travel pattern, but conversely, the algorithm should
minimize the proportion of passengers who rarely travel but
are still being assigned with a regular pattern because these
behaviors could be unreliable. Fig. 4 demonstrates the number
of passengers with a regular OD but who traveled less than ten
times during the four-month study period. Given that ε has been
chosen as 1000 m, MinPts has been chosen as 8 for the case
study.

The parameters for the temporal travel pattern analysis have
been chosen by a similar approach. Fig. 5 shows the percentage
of habitual journeys for different values of MinPts and ε.

For the temporal travel pattern analysis, the maximum den-
sity reach distance ε denotes the variability of boarding times
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Fig. 5. MinPts and ε sensitivity analysis for habitual time mining.

Fig. 6. Percentage of passengers with a habitual time but who traveled less
than ten times.

within the same travel pattern. ε has been chosen as 5 min to
allow some variability in vehicle arriving times. MinPts has
been similarly chosen by the same logic as the spatial pattern
analysis. Fig. 6 demonstrates the number of passengers with a
habitual time but who traveled less than ten times during the
four-month study period.

E. A Priori Market Segmentation Analysis for Transit
Passenger Segmentation

The market segmentation analysis follows a priori segmen-
tation where identifiable passenger classes are selected from
the SC user population based on the proportion of regular
OD/habitual time trips in the total transit usage. In the a priori
market segmentation, the cluster-defining descriptions are se-
lected in advance by the researcher, and conducting the study
will not influence the definitions of these predefined segments
[1]. The a priori segmentation is based on the assumption that
there are stereotypes about different classes. The segmentation
approach in this paper could be classified as a physiological
segmentation [1], where passenger travel characteristics, i.e.,
spatial and temporal travel patterns, define the type of passen-
ger. Four segments of passengers can be identified as follows.

1) Passengers with a regular OD but without a habitual time
are hereafter called regular OD passengers. They have
regular places to travel but are flexible in terms of the
traveling time.

Fig. 7. A priori rule for transit passenger segmentation.

2) Passengers with habitual times but without a regular
OD are hereafter called habitual time passengers. These
passengers use public transport at fixed times of the day
but travel between multiple ODs.

3) Passengers with both regular ODs and habitual times are
hereafter called transit commuters. They are commuters
who usually use public transport at habitual times for trips
between regular ODs.

4) Passengers without neither a regular OD nor a habitual
time are hereafter called irregular passengers. They do
not follow a particular regular transit travel pattern, which
means that they probably have other main travel modes.

Each SC user itinerary is revisited during the passenger
segmentation process. Fig. 7 illustrated the heuristic rule to seg-
ment transit passengers according to the proportion of regular
OD and habitual time journeys. Passengers during the study
period traveled for a certain number of journeys following
a regular OD, a habitual time pattern, or not following any
pattern. Each of them is represented as a point in Fig. 7. The
color of the point represents the number of journeys made
within the study period.

Only passengers with no recognizable pattern are segmented
into the irregular passenger type. The other passengers could
be grouped into three identifiable types. Transit commuters
followed spatial and temporal patterns in most of their jour-
neys. Regular OD passengers made more spatially regular than
habitual temporal journeys, and vice versa for habitual time
passengers. These heuristic rules are translated to a priori rules
for market segmentation as follows.

1) Rule 1: If no temporal or spatial travel pattern is identi-
fied, the passenger is classified as an irregular passenger.

2) Rule 2: If more than 50% of the journeys were made
within habitual times and between regular ODs, the SC
user is classified as a transit commuter.

3) Rule 3: The remaining passengers are segmented into
regular OD passengers if the proportion of the regular OD
journeys is more than the habitual time journeys, and vice
versa for the habitual time passengers.
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Fig. 8. Passenger segmentation result.

IV. PASSENGER SEGMENTATION ANALYSIS

This section augments the transit passenger characterization
by analyzing the market segmentation results. This section fur-
ther disaggregates each passenger type into subsegmentations
of different transfer behaviors, modes and routes used, card
types, and usage frequency. In other words, this section aims
to exploit the coarse-grained information of passenger types
toward a more fine-grained understanding of market segments,
their needs, and the capabilities required to serve them.

Fig. 8 illustrates each market segment contribution in the
number of passengers and the fare revenue. The dominance
of the irregular passengers (64%) denotes that most of the SC
users do not have regular travel patterns. The transit commuters
only account for 14%, whereas the regular OD passengers
and the habitual time passengers account for 13% and 8%,
respectively.

However, the transit commuters made the largest contribu-
tion (46%) to the ticket revenue. This fact designates that those
who regularly use public transport as the main travel mode
are still the major income contributor for transit operators.
Conversely, 64% of their customers (irregular passengers) con-
tributed for only 17% of the revenue.

For further analysis, this section analyzes these four pas-
senger segments in terms of the spatial and temporal daily
usage (see Section IV-A), the total travel and transfer time (see
Section IV-B), the modes and routes used (see Section IV-C),
the card type (see Section IV-D), and the frequency of use (see
Section IV-E).

A. Spatial and Temporal Pattern of Daily Usage

This section exploits the usage pattern of each passenger type
to understand the daily usage of the transit network. Fig. 9
illustrates that the average number of journeys is made per
passenger at different times of the day.

Fig. 9 shows that the transit commuters mainly traveled
during peak periods, whereas the irregular passengers traveled
any time but generally started later in the morning (from
8:00 A.M.) and finished earlier (6:00 P.M.) than any other class.
One trip purpose assumption can be made that the transit com-
muters mostly travel for school- and work-based trips and that
the irregular passengers mostly travel for less tightly scheduled
trips, such as for leisure or shopping activities. The regular OD
passengers such as those who are flexible in time made the most

Fig. 9. Average journeys made by each type of passenger.

Fig. 10. CDF of the total travel time.

number of journeys during off-peak periods. Conversely, the
habitual time passengers such as those who follow a temporal
travel pattern mainly traveled during peak periods, similar to
the transit commuters.

B. Total Travel and Transfer Time

This section exploits the differences between the passenger
types in terms of the total travel and transfer time to augment
the understanding of passenger behaviors. Fig. 10 shows the
empirical cumulative density function (cdf) of the total journey
travel time made by different types of passengers.

The total time spent on traveling was relatively similar
among different passenger types. The transit commuters spent
slightly less time for traveling than the irregular passengers and
other types. This difference might come from the difference in
the transfer time, which is illustrated in Fig. 11.

Fig. 11 shows that the majority of passengers make journeys
with no transfer. The transit commuters made significantly less
transfer than those of irregular and habitual time passengers.
Nearly 90% of the transit commuters made no transfer during
their journeys, leaving only over 10% of the journey having a
single transfer and an insignificant number of journeys having
more than one transfer. Conversely, over 20% of the irregular
passenger journeys required at least a transfer. This fact implies
that transfer is one of the most important disutilities of the
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Fig. 11. Proportion of journeys with none, one, two, and three transfers.

TABLE II
MODE CHOICE DECISION OF DIFFERENT PASSENGER TYPES

transit system, which discourages passengers to commute on
a daily basis. It is consistent with findings in literature, where
existing studies believed that transfer could be the decisive
factor to the transit quality of service [21]. The habitual time
passengers show high mobility needs, with more transfers than
any other passenger types. A journey by a habitual time passen-
ger on average would consist of 1.33 legs compared with only
1.12 legs in that by a transit commuter.

C. Modes and Routes Used

This section investigates the passenger mode and the route
choice over the bus, city train, and ferry systems in SEQ,
Australia. Table II shows how different passenger types used
the transit system. The “train only,” “bus only,” and “ferry only”
modes represent the journeys made by a single transit mode,
whereas “bus–train,” “bus–ferry,” and “train–ferry” represent
the corresponding two modes that were used for traveling.
There is no journey that used all the three modes of transit.

The number of bus journeys exceeded that of train journeys
in all passenger types, whereas the ridership share for ferry jour-
neys was insignificant compared with the other two modes. The
service coverage could be the reason for this figure. Although

Fig. 12. High-frequency and low-frequency route choice decisions of differ-
ent passenger types.

the bus network in SEQ consists of over 24 000 stops and the
rail system consists of 146 stations, there are only 24 ferry
terminals of 11 ferry lines. The ferry system with a limited com-
mercial speed and service coverage did not attract passengers
with a tight schedule. Only 2.25% of the transit commuters’
journeys and 1.4% of the habitual time passengers’ journeys
were ferry journeys. The insignificant numbers of bus–ferry and
train–ferry journeys also suggest the poor connectivity of the
ferry to rail and bus networks.

The transit commuters noticeably traveled more train
itineraries than any other type. The city railway network in
SEQ has a centripetal structure, which facilitates the going-to-
school/work activities to the Brisbane central business district
(CBD) of the transit commuters. Conversely, the bus network
structure is more centrifugal and has a widespread coverage.
Passengers with mobility needs to multiple destinations such
as the habitual time passengers consequently used more buses
than any other passenger type.

Fig. 12 illustrates the route choice decisions of bus riders
during the study period. The bus routes are classified into high-
frequency lines (equal or less than 15 min per vehicle) and
low-frequency lines (larger than 15 min per vehicle). The SEQ
network consists of 38 high-frequency lines over the total of
446 bus lines.

Despite the limited number of high-frequency bus lines
(approximately 8.5% of the total number of lines), Fig. 12
clearly shows that up to 54% of the regular OD passengers’
journeys were from those high-frequency lines. This figure
was also high in irregular passengers, habitual time passengers,
and transit commuters, with 46%, 38%, and 29%, respectively.
The results show that high-frequency services were desired
by transit passengers of any type. These lines promote the
preferable “turn up and go” behavior, where passengers ran-
domly arrive to transit stops without checking a schedule [22].
However, passengers of a high temporal travel pattern such as
the transit commuters and the habitual time passengers were
less dependent on high-frequency bus lines than the regular OD
and irregular passengers. It means that passengers on a time
habit are more willing to check the timetable and take the less
frequent bus lines. This finding is consistent with the study
where Farag and Lyons [22] asserted that people would only
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Fig. 13. Proportion of each passenger type over different SC card class.

turn up and go if there are no time constraints and the service is
frequent.

D. Card Type

This section analyzes the proportion of each passenger type
under the six classes of SC cards in Queensland, Australia
(adult, senior, child, pensioner, secondary school student, and
student) to augment the understanding of these types.

Fig. 13 shows that adults are the largest contributor in all
passenger types. Most of the transit commuters are adults,
who are currently charged with the highest ticket fare. Their
ticket fares, along with their high number of journeys, explain
why the transit commuters are the main contributors of ticket
revenue. However, a large proportion of adult cards are irregular
passengers, which indicates that public transport is not the main
mode of transport for those people.

Most of child cards (inclusive of children of 5–14 years) are
also transit commuters due to their tight schedule and lack of
travel activities. It is essential that the transit system is safe and
reliable so that parents allow their young children to travel by
public transport; otherwise, there would be more drop-off/pick-
up cars on the roads.

School students still have a tight daily schedule similar
to the child class. However, they have more travel activities
and require more mobility than the child class, which makes
habitual time passengers as the biggest contributor for this
class.

The majority of tertiary students are regular OD passengers.
Their flexible study schedule is probably the reason for this
trend.

The major contributor in the senior and pensioner classes is
irregular passengers because passengers from these classes are
flexible in time and have no mobility needs for work or study.

E. Frequency of Transit Usage

This section investigates the transit usage frequency of dif-
ferent passenger types by data mining techniques. A data set
containing the number of boarding and travel days has been

TABLE III
DATA SET USED IN THE FREQUENCY OF TRANSIT USAGE ANALYSIS

constructed for every passenger. Table III shows an example of
the data set.

The number of travel days and journeys made represent the
frequency of use from each passenger. This section aims to
find a threshold to differentiate between frequent and infrequent
transit passengers. For that purpose, a k-mean algorithm is used
to classify transit passengers into two clusters. The k-mean
algorithm seeks to minimize the sum of all points to the centroid
of each cluster [12]. The objective function of the algorithm is
expressed as

Minimize : J =
k∑

j=1

n∑

i=1

∥∥∥x(j)
i − cj

∥∥∥
2

(2)

where

j = 1, . . . , k, where k is the number of predeter-
mined clusters, which, in this case, is k = 2;

i = 1, . . . , n, where n is the number of data
points, which, in this case, is the passengers, i.e.,
n = 1, 010, 158;

‖x(j)
i − cj‖

2
distance measure between a data point x(j)

i and

cluster center cj . Points x(j)
i and cj are located

in a 2-D space of the number of travel days and
the number of trips made.

The algorithm is composed of the following steps.

a) Place all the points (passengers) into the 2-D space.
b) Assign each point into the cluster of the closest centroid.
c) Recalculate the positions of the two centroids.
d) Repeat steps b and c until the centroids are stationed.

Fig. 14 illustrates the classification result, whereas Fig. 15
shows the proportion of the frequent and infrequent passengers
in each passenger type.

The majority of the transit commuters frequently used
the transit system during the study period, whereas almost
all the irregular passengers did not travel frequently. It means
that the passengers using public transport on a spatial and tem-
poral travel pattern would also travel more than those having no
travel pattern.

F. Summary of Passenger Travel Pattern Analysis

This section sums up the knowledge gained from analyzing
the passenger segments. Table IV shows the descriptive statistic
of each passenger type.

The understanding of each passenger type augments the
passenger characterization. The following understanding about
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Fig. 14. Classification of the frequent and infrequent passengers.

transit riders could be gained from the passenger segmentation
analysis.

1) The majority (64%) of the operated SCs are irregular
passengers, who do not follow any travel pattern. These
passengers rarely travel by public transport (99% of them
are infrequent users of the transit system) and in total con-
tributes to only 17% of the total ticket revenue. It means
that selling more SCs would not earn much profit to both
the transit authority and the society, but passengers should
be encouraged to make more journeys.

2) Most of the transit commuters would travel during peak
periods and travel from outside to inside the CBD in
the morning peak, and vice versa for the afternoon peak.
The transit commuters only proportioned for around 14%
of the SC population but contributed to 46% of the
revenue because their majority are frequent transit users
(77%). It means that encouraging passengers to more
regularly travel would also increase their travel frequency
and, eventually, the ticket revenue contributions. How-
ever, these passengers are directly affected by transfers,
which could be one of the decision factors limiting their
patronage.

3) Regular OD passengers represent people who are flexible
in time but who regularly travel between OD pairs, such
as tertiary students. Regular OD passengers travel more
in the off-peak period than any other type.

4) Habitual time passengers represent people who usually
travel within a regular time period but travel to different
destinations. Due to the need of traveling to multiple
destinations, this type of passengers requires more transit
mobility. Consequently, they take more transfers and
more bus journeys than any other type. Examples of them
are school students.

V. DISCUSSION ON POTENTIAL APPLICATIONS OF THE

PROPOSED PASSENGER SEGMENTATION

To transit authorities, all passengers deserve the utmost at-
tention. The understanding of each passenger type, behaviors,
and needs facilitates the development of the transit system and

Fig. 15. Frequency of the transit usage in each passenger type.

TABLE IV
DESCRIPTIVE STATISTIC OF THE TRANSIT PASSENGER TYPES

service provision to better serve each individual passenger.
The characterization of passenger demand by the proportion
of each type shows the overall service requirements for each
region. For instance, an area of mainly regular OD passengers
would not require as much timely service as an area of transit
commuters, whereas too many irregular passengers suggests
a problem in the transit service provided. Transit authorities
could aim to raise the number of high-value customers such
as transit commuters for revenue- and transit-oriented develop-
ments. Nevertheless, they could also fulfill the needs of other
passenger types to maintain the customer equity and the overall
attractiveness of the system. This section suggests several prac-
tical service improvements using the knowledge of passenger
segmentation.

The understanding of each passenger type helps transit au-
thorities in transit strategic planning. Transit-on-demand ser-
vices that serve people who need regular travel where standard
routes are not available can be developed. Transfer coordina-
tion may be developed for major transfer stops used by large
numbers of transit commuters and habitual time passengers.

A targeted survey could aim for the irregular passengers
to understand the disutility that limits the level of ridership.
The segmentation results indicate that, before thinking about
attracting new customers, transit authorities should first encour-
age the majority of their customers to choose public transport
as the main travel mode. The enormous number of operated
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SCs does not tell much about the passenger transit usage
because 64% of them rarely travel. Transit authorities could pay
special interest to passengers who were not irregular passengers
before but recently became irregular passengers. These are the
potential customers whose behaviors have changed due to cer-
tain reasons. Understanding these reasons would benefit transit
authorities to prevent the reduction of patronage. Conversely,
the reasons for an irregular passenger to transform to another
passenger type would be interesting successful stories to learn
to further improve the transit system.

Transit authorities could also observe the impacts of recent
transit policies to their customers. For instance, a policy on
reducing the transit fare during off-peak periods would cause
passengers, particularly people who have flexible daily sched-
ules such as regular OD passengers, to travel more during off-
peak periods. Transit authorities could foresee the number of
affected passengers for this policy by looking at those who usu-
ally travel at the end of the peak period and are flexible in terms
of time. The number of passengers at each type before and after
a policy implementation is an important evaluation of different
fares, marketing, and servicing strategies. For instance, more
transit commuters and less irregular passengers mean that more
passengers become daily users of public transport.

Finally, incentives and personalized services can be given to
transit commuters, regular OD passengers, and habitual time
passengers to encourage passengers to use public transport for
commuting. The characterization of regular behaviors provides
a tremendous opportunity for transit authorities to provide per-
sonalized information and incentives to each passenger. Once
a passenger enrolled in the system, real-time information on
their regular journeys could be given to individual passengers.
Special incentives can be given to promote the commuting
behavior, e.g., by reducing the ticket type on regular journeys.
Although many SC systems are not associated with user contact
information, the travel pattern can be stored and provided to
each individual passenger through SC IDs. The information and
the service can remain customized for each individual, and at
the same time, maintain privacy.

VI. CONCLUSION

This paper has proposed a systematic approach to mine the
travel pattern and to segment transit passengers only using
SC data.

The individual transactions of each SC user on each working
day were combined to reconstruct travel itineraries. DBSCAN
algorithms were separately applied to mine the regular OD and
the habitual time from the travel itineraries. The passengers
were finally segmented into transit commuters, regular OD
passengers, habitual time passengers, and irregular passengers
by an a priori passenger market segmentation approach. Anal-
yses on SC user types indicate interesting patterns of transit
usage from each type. Practical applications of the method were
also discussed, showing benefits to both SC users and transit
operators.

The passenger segmentation methodology presented in this
paper has enabled transit operators to segment their customers
and provide them with well-suited information and services.

Further extensions of this paper are in progress, in which the
SC data of other time periods are used to evaluate the impacts
of different policies to transit passengers. Investigations of the
coming-back-home behavior and the segmentation of the trip
distance further augment the understanding of passenger types.
In the meantime, the findings of this paper have been useful to
augment the passenger characterization and to better cater to
individual transit passengers.
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