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Analytical Modelling of Point Process and Application to Transportation

Le Minh Kieu

Abstract This chapter aims to explain the inference mechanisms of the expected number of passengers arriving at transit
stops. These questions are crucial in tactical planning and operational control of public transport to estimate the impact and
effectiveness of different planning and control strategies. The existing literature offers limited number of approaches for these
problems, which mainly focus more on the prediction of aggregated passenger counts. We propose two analytical models
to model the arrivals of passengers: The first model is a non-homogeneous Poisson Process (NHPP); the second model is a
time-varying Poisson Regression (TPR) model. Finally, numerical experiments and case study show the performance of the
proposed models using simulated data. The analysis of estimated model’s parameters using domain knowledge also provide
good insights into the factors that impact the patronage level of buses in New South Wales, Australia.

1 Introduction

Passenger demand plays an essential role in tactical planning and operational control in transportation, especially in public
transport, because transit vehicles have to stop for passengers boarding and alighting. Transit tactical planning and operational
control, as defined in [9], concerns the decisions to design the exact transit services, e.g. frequency of services and timetables;
and the decisions to control the operating service, especially in real time. The questions of modelling the expected number of
passengers arrivals at transit stops are essential for these studies. For instance, the total or mean waiting time is often used as
the main objective function for public transport tactical planning and operation studies [10, 3, 8, 9], which in turn is estimated
using a knowledge of passenger demand.

The expected number of passenger arrivals can be explicitly linked to the estimation of aggregated passenger counts within
a time period. Literature currently offers two major lines of research for this problem, one for long-term and the other for
short-term passenger demand estimation. Long-term demand estimation models aim to complement long-term transit planning
practice, such as in four-step demand modelling [19], route planning and frequency setting [9]. These models are developed
to anticipate the approximation of passenger demand in the long-term for transit strategic planning, rather than the tactical
planning and operational control problem discussed in this chapter. The other line of research, short-term demand estimation
model, favours the use of data-driven and black-box methods, mainly aim for predictions. Examples of them include Neu-
ral Network [4, 20], Support Vector Machine [23] and the time-series analysis models [18]. While these methods showed
their accuracy and robustness, the majority of them aim to provide predictions rather than an analytical connections between
passenger demand and explanatory variables. For transit tactical planning and operational studies, data-driven models for
short-term prediction may not be as useful as analytical models, because analytical models can be a part of a holistic frame-
work, where researchers can estimate the passenger demand given the changes in explanatory variables. Existing data-driven
methods generally use aggregated counts at previous time steps to predict the count at the next time step by relying on the
underlying dynamic relationship between adjacent time steps.

One question which is of interest is how passengers arrive at transit stops. Transport researchers are generally interested in
modelling and simulating the exact passenger arrival times at transit stops. This information is helpful for various purposes, for
instance, to estimate the total travel time for passengers from the moment of arrival at transit stops to the moment of alighting
a transit vehicles. Existing studies in transit planning and operational control usually assume a known passenger arrival rate,
which is the number of passengers arriving at a transit stop per time unit. The arrival rate allows a convenient simulation of
passenger arrivals under one of two approaches: (a) deterministic or (b) stochastic point process. The deterministic approach
assumes that passenger arrive uniformly to transit stops, so that the number of boarding/arrived passengers is simply the
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2 Le Minh Kieu

product of the passenger arrival rate and the time headway between consecutive vehicles. The approach has been used in
many earlier studies such as [10] and [13]. [6] and [7] also use a variation of this approach, where a dimensionless parameter
is used to represent the marginal increase in vehicle delay resulted from a unit increase in headway. The stochastic point
process approach assumes that passengers arrive randomly at stops with a stable arrival rate. In the majority of existing
studies, this point process is a Homogeneous Poisson Process (HPP), which aims to model the passenger arrival times using
only the arrival rate and the time interval between consecutive arrivals, regardless of the interval starting time. HPP is widely
used to model systems with stochastic events, such as modelling the presence of connected vehicle in traffic [25] or traffic
incidents [1]. An emerging number of existing studies in public transport have also adopted this stochastic approach, such
as [12], [24] and [17]. There is considerable evidence that assumptions of stochastic HPP process for passenger arrivals is
reasonable for high-frequency services, such as those with scheduled headway to 10-15 minutes [9]. At longer headways,
there is another line of research concerning passengers who time their arrivals with the schedule and service reliability [11, 2].
In this study, we assume that passengers do not consult the schedule prior to arrival at transit stops, thus the use of a stochastic
point process such as HPP remains valid.

Existing stochastic processes in literature of public transport assume a stable passenger arrival rate or intensity that does
not change over time. A common approach to include time into consideration is to define exogenous time intervals. In each
interval, the passenger arrival rate is constant. This approach has limited accuracy, because the passenger arrival process
is not fully continuous time-dependent, but rather multiple independent HPP superimposed [22]. Non-homogeneous Poisson
Process (NHPP), which allows the arrival rate to be continuous time-dependent, is a substantial advance from the HPP in terms
of versatility and accuracy to the model passenger arrival process. NHPP models are not popular in public transit studies, but
have been used elsewhere, such as software reliability [14] and finance [5].

This chapter proposes two analytical methods to model expected arrival rate of passengers arriving at transit stops. After
the literature review, the first part of the chapter concerns the modelling of exact passenger arrival times using a time-varying
Point Process model. Another aspect of the chapter concerns that of the modelling of aggregated counts of passenger demand,
using a time-varying Poisson Regression model. This model aims to count how many passengers will be at a stop in a specific
time period under certain conditions. Only aggregated counts of passenger demand are required to train this model. Finally,
we also show the model calibration process using synthetic simulated data.

2 Modelling the exact arrival times with Point Process

In this section, we briefly recap the the fundamentals of point processes and the celebrated Poisson process, which would be
used to ’count’ and further evaluate the passenger demands. The following section serves as the building block for realistic
modelling of passenger demands in later sections, to include periodicities in demands.

2.1 A representation of point processes

A point process is a mathematical construct to record times at which event happens, which we shall denote by T1,T2, . . .. For
example T1 represents the time when passenger 1 arrives at a bus stop, T2, represents the following passenger arrival and so
on. Tk can usually be interpreted as the time of occurrence of the k-th event, in this case - the k-th arrival. In this paper, we
refer to Ti as event times. Formally, we define a counting process Nt as a random function defined on time t ≥ 0, and takes
integer values 1,2, . . .. We define N0 = 0. Nt is piecewise constant and has jump size of 1 at the event times Ti. The Poisson
process can be defined as follows:

Definition 1. Poisson process: Let (Qk)k≥1 be a sequence of independent and identically distributed Exponential random
variables with parameter λ and event times Tn = ∑

n
k=1 Qi. The process (Nt , t ≥ 0) defined by Nt := ∑k≥1 1{t≥Tk} is called a

Poisson process with intensity λ .

Memoryless property.

Note that the sequence of Qk are known as the inter-arrival times, and it can be interpreted as follows in terms our modelling
context: the first passenger arrives at time Q1, the second arrives at Q2 after the first, so on and so forth. One can show that this
construct means that passenger arrives at an average rate of λ per unit time, since the expected time between event times is 1

λ
.

Suppose we were waiting for an arrival of an event, say another bus passenger arrival to a bus stop, the inter-arrival times of
which follow an Exponential distribution with parameter λ . Assume that r time units have elapsed and during this period no
events have arrived, i.e. there are no events during the time interval [0,r]. The probability that we will have to wait a further t
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time units is given by

p(Q > t + r |Q > r) =
p(Q > t + r , Q > r)

p(Q > r)

=
p(Q > t + r)

p(Q > r)
=

exp(−λ (t + r))
exp(−λ r)

= exp(−λ t) = p(Q > t). (1)

Eq. (1) is said to have no memory and it is one of the special property of the Poisson process. Usually memorylessness is a
property of certain distribution rather than a process. It usually refers the waiting time distribution until a certain event; and
does not depend on how much time has elapsed already.

Moment generating functions.

We now look at a particular kind of transformed average. The moment generating function ϕ of a random variable X , is
defined as ϕX (s) := E[esX ]. We now compute the moment generating function of a Poisson distribution X ∼ Pois(λ ):

ϕX (s) = E[esX ] =
∞

∑
k=0

esk p(X = k) =
∞

∑
k=0

eske−λ λ k

k!
= e−λ

∞

∑
k=0

(λes)k

k!
= eλ (es−1). (2)

The moment generating functions are important because each distribution possesses a unique moment generating function.
This means that we can infer the distribution from the moment generating function. In addition, the moment generating
function of a sum of independent random variables is the product of the moment generating function of the individual random
variables.

2.2 Non-homogeneous Poisson Process

The Poisson process, as we defined it so far, is simply characterised by a constant arrival rate λ . It is equivalent to an
assumption, for example, that public transport passengers arrival rate to stops is the same regardless of the time being mid-
night or peak periods. It is more useful to extend the Poisson process to a more general point process in which the arrival rate
varies as a function of time. Note that the intensity usually depends on the arrival time, not just on the interarrival time. We
can define this type of process as non-homogeneous Poisson process (NHPP).

Definition 2. The point process N is said to be an inhomogeneous Poisson process with intensity function λ (t) ≥ 0 with
t ≥ 0, if

p(Nt+h = n+m |Nt = n) = λ (t)h+o(h) if m = 1,
p(Nt+h = n+m |Nt = n) = o(h) if m > 1,
p(Nt+h = n+m |Nt = n) = 1−λ (t)h+o(h) if m = 0. (3)

Note that if the point process N be a NHPP with intensity function λ (t), then N(t) follows a Poisson distribution with
parameter

∫ t
0 λu du, i.e. p(Nt = n) = 1

n! exp
(
−
∫ t

0 λu du
)(∫ t

0 λudu
)n. One can also show that the number of points in the interval

[s, t] follows a Poisson distribution with parameter
∫ t

s λu du, i.e. p(Nt −Ns = n) = 1
n! · exp

(
−
∫ t

s λu du
)(∫ t

s λudu
)n.

We can see that the exact event times are needed to calculate moments in the NHPP setting. This next section proposes a
public transport demand model and aims to simulate the dynamic and stochastic arrival process of public transport passengers.

2.3 The proposed time-varying intensity function for dynamic and stochastic passenger arrival
process.

We propose a parametric form for the rate of demand of passengers:

λt = pcp t p−1 + ε, (4)

where c > 0 and p ∈ R. The paramter ε is usually taken to be fixed and acts as a parameter such that the rate never goes
negative (bounded away from zero), since a negative rate of demand is non-sensical. Note that this function is rich enough for
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several reasons. When the parameter p = 1, it reduces to a constant and we know from above that this specifies the parameter
for the Exponential random variables. If this is respected then the data follows a Poisson process. If on the other hand, under
the case then p < 1, this gives a decreasing curve (see plot). We interepret this as the rate of demand is decreasing. Finally,
our choice of intensity function can also handle the case when p > 1 - this corresponds to the increasing rate of demand. We
summarize the following description below:

• it reduces to a constant when p = 1, and hence is able to recover Poisson process should the data respects this,
• when p < 1, the rate of demand is decreasing,
• when p > 1, the rate of demand is increasing.

Figure 2.3 shows a plot of this intensity. It can be easily noted that this is a generalisation of the HPP, where the rate can be
constant (similar to HPP) or varies over time.
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Fig. 1 A proposed NHPP model with time-varying intensity function.

2.4 Likelihood function for nonhomogeneous Poisson process

One of the main problems in modelling nonhomogeneous Poisson process is inferring its parameters given data so that we
have a calibrated model for the demand of passenger arrivals. Let Nt be a counting process on [0,T ] for T < ∞ and let
{T1,T2, ...,Tn} denote a set of event times of Nt over the period [0,T ]. Then the data likelihood L (see [21] for instance) is a
function of parameter set θ is:

L(θ) =
n

∏
j=1

λ (Tj)e−
∫ T

0 λx dx. (5)

Let Θ be the set of parameters of the modulating the nonhomogeneous Poisson process. The maximum likelihood estimate
can be found by maximizing the likelihood function in Eq. 5 with respect to the space of θ ∈Θ . Concretely, the maximum
likelihood estimate θ̂ is defined to be θ̂ = argmaxθ∈Θ l(θ). It is customary to maximize the log of the likelihood function:

l(θ) = logL(θ) =−
∫ T

0
λx dx+

N(T )

∑
j=1

logλ (Ti) (6)

This negative log-likelihood can then be minimized with standard optimization packages.
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3 Modelling the aggregated passenger demand with Time-varying Poisson Regression

In this section, we argue that a collective point process framework can also be formulated as a time-varying Poisson Regression
model to estimate the count of arriving passengers to public transport stops. Aggregated counts of passengers are assumed to
follow a Poisson distribution, which is consistent with the collective assumption in a Poisson Process (Definition 2). We then
further propose a time-varying formulation of Poisson Regression to model the aggregated passenger counts at different time
of the day.

3.1 A representation of Generalized Linear Model: Poisson Regression

One of the most common type of regression, the ordinary least squares assumes that the dependent variable Y is normally
distributed around the expected value, and can take any real value, even negative values. Another type of regression, the
Logistic Regression assumes a binary 0-or-1 dependent variable. These models are often unsuitable for count data, such as
aggregated passenger counts, where the data is intrinsically non-negative integer-valued.

Poisson Regression is widely considered as the benchmark model for count data. It assumes the dependent variable Y
has a Poisson distribution, and assumes the logarithm of Y can be modelled by a linear combination of X . It is a type of
Generalized Linear Model (GLM). Let k be the number of independent variables (regressors). X is a 1-dimension vector
X = (X1,X2, . . .Xk), which can be both continuous or categorical variables. Poisson Regression can be written as a GLM for
counts:

log(µ) = β0 +β1x1 +β2x2 + . . .+βkxk = xT
β (7)

The dependent variable Y has a Poisson distribution, that is yi ∼ Poisson(µi) for i = 1, ...,N. The Poisson distribution has
only one parameter µ that decides both conditional mean and variance. The conditional mean E(y|x) and conditional variance
Var(y|x) are equal in the Poisson regression model. The following exponential mean function can be written:

E(y|x) = µ = exp(xT
β ) (8)

Under the GLM framework and assuming that an n independent sample of pairs of observations (yi,xi), the regression
coefficient β j can be estimated using Maximum Likelihood Estimation (MLE). It is worth reiterating that MLE aims to find
parameters that maximize the probability that the specified model has generated the observed sample. Given the observed data,
we can define the joint probability distribution of the sample as the product of individual conditional probability distributions.

f (y1, . . . , yN |x1, . . . , xN ;β ) =
N

∏
i=1

f (yi|xi;β ) (9)

As per the previous section, equation 9 is often called likelihood function, which is often written in a shorter form:

L = L(β ;y1, . . . , yN , x1, . . . , xN) (10)

MLE aims to maximise this likelihood function with regard to parameters β̂ :

β̂ = argβ maxL(β ;y1, . . . , yN , x1, . . . , xN) (11)

It is often more convenient to maximise the logarithmic transformation of this likelihood function, as it replaces products
by sums and allows the use of the central limit theorem. We define the log-likelihood function of Poisson Regression as:

`(β ;Y, X) = log
N

∏
i=1

f (yi|xi;β )

=
N

∑
i=1

log f (yi|xi;β )

=
N

∑
i=1
−exp(x′iβ )+ yix′iβ − log(yi !)

(12)

The estimated regression coefficient β j that maximizes the value of the log-likelihood function, is found by computing the
k first derivatives of the log-likelihood function with respect to β1,β2, ..,βk and setting them equal to zero.



6 Le Minh Kieu

sN(β ;y, x) =
∂`(β ;y,x)

∂β
=

N

∑
i=1

[yi− exp(x′iβ )]xi (13)

We define β̂ as the value of β that solves the first order conditions:

sN(β̂ ;y, x) = 0 (14)

The system of k equations in 13 has to be solved using an numerical iterative algorithm due to the non-linearity of β .
There are a number of existing algorithms in literature that have been well implemented in various statistical packages, such
as Newton-Raphson, Broyden-Fletcher-Goldfarb-Shanno (BFGS), Nelder-Mead and Simulated Anneling method.

3.2 Time-varying Poisson Regression model

As we are concerned with the time dimension in the passenger arrival process, the arrival patterns can be considered as a time
series Yt . Autoregressive-based approaches for time-series, such as [18], or Neural Network based [4] approaches show high
accuracy and robustness, but focus on short-term demand prediction, rather than developing an analytical formulation which
is more useful for statistical studies. This section focuses on proposing an analytical model for public transport planning and
operational control. Thus we introduce here a time-varying formulation of Poisson Regression to capture the variations of
passenger arrivals to transit stops. We call this model as the Time-varying Poisson Regression (TPR) model.

We are interested in modelling the counts of passenger demand throughout the time of the day. One can observe from
aggregated passenger demand data that this count variable has a periodic sinusoidal pattern with two demand peaks at AM
and PM rush hours, while gradually reduces to a plateau during off-peak periods. This bimodality distribution of passenger
demand is well observed and analysed in literature [15]. A natural modelling approach to capture this sinusoidal pattern is to
use a Fourier series:

f (x) =
1
2

a0 +
∞

∑
n=1

an cos(nx)+
∞

∑
n=1

bn sin(nx), (15)

where

a0 =
1
π

∫
π

−π

f (x)dx, (16)

an =
1
π

∫
π

−π

f (x)cos(nx)dx, (17)

bn =
1
π

∫
π

−π

f (x)sin(nx)dx. (18)

Here we assume the dependent variable Y is both Poisson distributed and time-dependent, that is yt ∼ Poisson(µt) where
t = 1, ...,N are a time-of-day variable. The time-varying formulation of our Poisson Regression model can be written as:

log(λt) = α0 +
K

∑
k=1

[
βh cos(k

2π

T
t)+ γh sin(k

2π

T
t)
]

(19)

The harmonic terms sin(k 2π

T t) and cos(k 2π

T t) are added to capture the daily demand patterns. K is the number of harmonics,
in which larger K would generally increase the accuracy, but also the complexity of the model. If t is in minutes, T equals
24*60 minutes.

We further increase the adaptability of the model to observed passenger demand data by adding time-invariant independent
variables into the model in equation 19. These variables do not have a time-varying formulation. Many variables in practice
can be classified into this group, such as weather, day-of-the-week, events or travel cost. For generality, The TPR model can
be formulated as:

log(µt) = α0 +
H

∑
h=1

[
βh cos(k

2π

T
t)+ γh sin(k

2π

T
t)
]
+

V

∑
v=1

ξv xv (20)

where V is the number of time-invariant independent variables. Larger V would generally increase the model complexity. The
question to whether a time-invariant variable xi is used in the model is to be decided by considering its correlation to other
variables, and its contribution to the prediction of the dependent variable log(µt).
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The TPR model in equation 20 has both time-varying and time-invariant independent variables. The next section will
discuss the parameter estimation procedure of this model using MLE.

4 Simulated experiments

In this section, we describe the numerical experiments of NHPP and TPR models using synthetic simulated data. We first
generate the synthetic data using predefined parameters, and then fit this simulated data to the proposed NHPP models. The
models perform well if they can get back the predefined parameters.

4.1 Non-homogeneous Poisson Process (NHPP)

This subsection discusses the simulation of data from NHPP with predefined parameters as well as the parameter estimation
process for NHPP.

Simulation of a Nonhomogeneous Poisson Process using predefined parameters

Given predefined parameters, we briefly explain how we can apply the thinning method [21] to simulate a NHPP. Thinning is
method to imitate the trajectory of the counting process over time. Given a NHPP with time-dependent intensity function λt ,
we choose a constant λ ∗ such that

λt ≤ λ
∗, for all t, 0≤ T, (21)

for some maturity T < ∞. We then simulate a homogeneous Point process with the designated rate λ ∗ through a sequence of
independent and identically distributed exponential distributed random variable, each having a theoretical mean of (λ ∗)−1. We
then look at simulated event times of the homogeneous Poisson process and assign some of these to be the event times of the
nonhomogeneous Poisson process with intensity function λt . We let an event time at a particular time t in the homogeneous
Poisson process be also an event time in the nonhomogeneous Poisson process with probability λ (t)

λ ∗ , independent of the history
up to and including time t, and assign no event time otherwise. Hence, the set of event times of the nonhomogeneous Poisson
process constructed is a subset of the event times from the homogeneous Poisson process. The resulting pseudo-algorithm
reads as follows:

1. Set T0← 0 and T ∗← 0 where T ∗ denotes the event times of homogeneous Poisson process with intensity λ ∗

2. For j = 1,2, . . .n : generate an exponential random variable E with mean (λ ∗)−1 and set T ∗ = T ∗+ E (λ ∗). We then
generate a unit uniform random variable and accept the event time (Ti = T ∗) if U < λ (T ∗)

λ ∗ , and reject otherwise. The
sequence Ti generated from this algorithm is the event times from a nonhomogeneous Poisson process with rate λt .

Numerical experiments

We set our parameters for the NHPP model in Equation 4 as in Table 1 as follows:

Table 1 Parameters for NHPP

Variables Value

p 0.75
c 0.3

The aforementioned thinning simulation is therefore performed for the intensity function λt = 0.304 · t−0.25 + ε . The sim-
ulated arrival times are then used to estimate the parameters for the proposed NHPP model in Equation 4. The calibrated
parameters should be as close as possible to the predefined parameters in Table 1. Figure 2 shows the calibration results. The
calibrated parameters are very similar to the predefined parameters.
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Fig. 2 Calibrated and true trajectory of the proposed NHPP intensity function

4.2 Time-varying Poisson Regression (TPR)

This sub-section describes the generation of synthetic simulated data and the parameter estimation process for time-varying
Poisson Regression model

Data generation process

The TPR model has 1+ 2×K +V parameters, where K is the number of harmonics and V is the number of time-invariant
independent variables. The complexity of the model depends on the values of K and V . In this section, we generate the
synthetic data using 3 harmonics (K = 3) and 3 time-invariant variables (V = 3). The time-invariant variables xi are normally
distributed with zero mean, and standard deviation of 0.1, 0.2 and 0.3, respectively. Table 2 shows the chosen parameters for
the synthetic simulation.

Table 2 Parameters for synthetic simulation data

Variables Value Note

α0 1 Intercept
β1 -1 Harmonic 1
γ1 1 Harmonic 1
β2 -1 Harmonic 2
γ2 1 Harmonic 2
β3 1 Harmonic 3
γ3 -1 Harmonic 3
ξ1 0.5 x1 ∼N (0,0.1)
ξ2 0.5 x2 ∼N (0,0.2)
ξ3 0.5 x3 ∼N (0,0.3)

We simulate 100 days of data, with the time varies from 4AM to 10PM everyday and each sample is an aggregated
passenger count for a 15-minute interval. Figure 3 shows the simulated passenger demand for the first 3 days. The x-axis is
the passenger count and the y-axis is every time window for the first 3 days of the dataset.

We use this synthetic simulated data to estimate the parameters for 4 TPR models, from simple to complex model. The
details for each model are as follows:
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• H1V1

The first model is a simple model with 1 level of harmonic and 1 time-invariant variable.

log(λt) = α0 +β1 cos(
2π

T
t)+ γ1 sin(

2π

T
t)+ξ1 x1 (22)

Table 3 shows the parameter estimates for Model 1.

Table 3 Estimated parameters for Model 1. Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Coefficients Estimate Std. Error z value Pr(> |z|)
α0 2.4169 0.0043 564.761 < 2E-16 ***
β1 -0.0316 0.0062 -5.139 2E-07 ***
γ1 0.8776 0.0047 185.005 < 2E-16 ***
ξ1 0.4064 0.0322 12.628 < 2E-16 ***

• H0V3

The second model ignores the effect of the harmonics. This model only includes 3 time-invariant variables.

log(λt) = α0 +
3

∑
v=1

ξv xv (23)

Table 4 shows the parameter estimates for H0V3.
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Fig. 3 Synthetic simulated data of passenger demand
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Table 4 Estimated parameters for H0V3. Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Coefficients Estimate Std. Error z value Pr(> |z|)
α0 2.5691 0.0033 787.4 < 2E-16 ***
ξ1 0.2484 0.0321 7.739 1E-14 ***
ξ2 0.5940 0.0161 36.824 < 2E-16 ***
ξ3 0.4111 0.0106 38.607 < 2E-16 ***

• H3V0

The third model ignores the effect of the time-invariant variables. This model only includes the 3 harmonic levels.

log(λt) = α0 +
H

∑
h=1

[
βh cos(k

2π

T
t)+ γh sin(k

2π

T
t)
]

(24)

Table 5 shows the parameter estimates for H3V0.

Table 5 Estimated parameters for H3V0. Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Coefficients Estimate Std. Error z value Pr(> |z|)
α0 0.63622 0.03264 19.5 <2e-16 ***
β1 -1.65975 0.05754 -28.84 <2e-16 ***
γ1 1.26252 0.0208 60.7 <2e-16 ***
β2 -1.27614 0.03227 -39.55 <2e-16 ***
γ2 1.27385 0.02118 60.15 <2e-16 ***
β3 0.92572 0.01676 55.22 <2e-16 ***
γ3 -0.83519 0.01336 -62.54 <2e-16 ***

• H3V3

The last model includes 3 harmonic levels and 3 time-invariant variables.

log(λt) = α0 +
H

∑
h=1

[
βh cos(k

2π

T
t)+ γh sin(k

2π

T
t)
]
+

V

∑
v=1

ξv xv (25)

Table 6 shows the parameter estimates for Model H3V3.

Table 6 Estimated parameters for H3V3. Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Coefficients Estimate Std. Error z value Pr(> |z|)
α0 0.64099 0.03144 20.39 <2e-16 ***
β1 -1.61123 0.05556 -29 <2e-16 ***
γ1 1.24552 0.02028 61.43 <2e-16 ***
β2 -1.25812 0.03142 -40.04 <2e-16 ***
γ2 1.24861 0.02058 60.67 <2e-16 ***
β3 0.93607 0.01662 56.34 <2e-16 ***
γ3 -0.85728 0.01304 -65.73 <2e-16 ***
ξ1 0.50175 0.03191 15.72 <2e-16 ***
ξ2 0.50383 0.01596 31.56 <2e-16 ***
ξ3 0.50248 0.01076 46.68 <2e-16 ***
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Model comparison

The results from Table 3 to 6 show the model performance. It is clear that H3V3 has closest parameters to the actual param-
eters for synthetic simulation. We further evaluate the goodness-of-fit of each model by comparing their Akaike Information
Criterion (AIC) statistics in Table 7.

Table 7 Goodness-of-fit of the proposed models

Model Degree of Freedom AIC

H1V1 4 135816.44
H0V3 4 173589.48
H3V0 7 26920.61
H3V3 10 23441.78

As expected, H3V3 shows the best fit among the proposed models. It is because the model incorporates all the determinants
in the data, including 3 harmonics and 3 time-invariant variables. H1V1 and H0V3 have significantly lower fits due to the lack
of harmonic variables, in which H1V1 has a slightly better fit compared to H0V3 due to the inclusion of one harmonic. The
time-invariant variables further increase the goodness-of-fit of modelling. One can see this fact by comparing the AIC statistic
of H3V0 and H3V3 because the only different between them is the time-invariant variables.

We also simulate one day worth of new aggregated data to evaluate the performance of each Poisson Regression model.
The data is simulated using the same parameters in Table 2 for 73 time periods of 15 minutes each. The new simulated data is
used in H1V1 to H3V3 to predict the value of Counts. Figure 4 shows the new data and the estimation results from H1V1 to
H3V3. One can easily see that H0V3 does not capture the sinusoidal pattern of the data. Model 1 captures some pattern with
limited accuracy, such as the fact that the demand in earlier time periods are larger than those in later time periods. H3V0 well
captures the sinusoidal pattern of the data, even the difference between two peaks periods around 8:00 and 16:00. Only H3V3
captures both the sinusoidal pattern and the deviation of the sinusoidal pattern introduced by time-invariant variables. In fact,
H3V3 provides very close estimation to the simulated data.
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5 Case study

This section describes a case study where the proposed models are implemented using an observed dataset. We use domain
knowledge in Transportation to decide the explanatory variables and to process the data for the models.

5.1 Case study site and dataset

This chapter uses an aggregated Smart Card data from New South Wales (NSW), Australia for the case study. Smart Card
is a microchip card, typically the size of a credit card, which has been widely used for ticketing purpose around the world.
Examples of Smart Card in public transport are the Oyster Card in London, Opal Card in Sydney, or Myki Card in Melbourne.
This chapter uses a 14-day Smart Card data. The data consists of over 2.4 million of Smart Card transactions over large
metropolitan areas in NSW, including Sydney, Newcastle and Wollongong City from February to March 2017. The data
consists of all bus transactions in the aforementioned metropolitan areas. Each data record contains the following fields:

• CardID: the unique Smart Card ID, which has been hashed into a unique number
• Ton: the time when the passenger with CardID boards a bus
• To f f : the time when the passenger with CardID aligns a bus
• Son: the stop/station ID of Ton
• So f f : the stop/station ID of To f f

We only focus our case study on estimating aggregated passenger counts using the Time-varying Poisson Regression (TPR)
model proposed in Section 3 because the timestamps in the Smart Card are the boarding and alighting times of a passengers
to a bus, rather than the passenger arrival times that are required for the model in Section 2. The objective is to estimate
an aggregated count of passengers per time period for each travel choices between a pair of origin and destination. Transit
providers can use this proposed TPR model to estimate the change in passenger demand given the changes in explanatory
variables such as travel time or transfer time.

The next few subsection describes the required steps to process the input data for the proposed TPR model.

5.2 Journey reconstruction algorithm

For each Smart Card record from each individual passenger, the first step is to reconstruct the full public transport journey
with transfers from origin to destination from individual Opal card transactions. This step is essential because Smart Card
data only includes the tap-on and tap-off, while we are interested in modelling a completed journeys between a origin and a
destination. A completed journeys would naturally give us the following explanatory variables for the TPR model:

• Travel time tt: the time gap between the first tap-on and the last tap-off of a journey
• Transfer time t f : the time gap between a tap-off from a bus to a tap-on to another bus to continue the journey
• Travel distance d: the Euclidean distance between the first tap-on and the last tap-off
• Distance from the origin to CBD do: the Euclidean distance from the origin to the Sydney CBD
• Distance from the destination to CBD dd : the Euclidean distance from the destination to the Sydney CBD

The journey reconstruction algorithm is based on the time and distance gap between individual tap-on and tap-off. Figure 5
shows the proposed journey reconstructing algorithm that based on [16]. We revise the algorithm proposed in [16] by adding
the distance gap ∆d, which is set to be 500 meter. ∆d is added to ensure that the transfer time will only be spent on walking
and waiting, rather than any other side activity using a private vehicles.

The time gap ∆ t is defined to be less than 60 minutes, because in Sydney passengers will receive a discount if they make a
transfer within 60 minutes from the last tap-off, so the majority of passengers would continue their journeys within this time
frame. The following steps describes the trip reconstruction process.

• Step 1: Querry all the Opal transactions of an individual passenger i. A binary indicator RID is assigned as zero.
• Step 2: For each transaction in the above database, the corresponding transaction is discarded if it is a tap-on reversal,

where tap-on and tap-off are at the same location
• Step 3: If RID equals zero, a variable OriginLocation is defined and set as equal to the current tap-on. We also assign a

new unique JourneyID, change RID to one and move to the next transaction. Otherwise we move to Step 4.
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Fig. 5 Journey reconstruction algorithm

• Step 4: Now with RID equals one, the current transaction will be assigned the current JourneyID if it satisfies three
conditions: (1) time gap between the current tap-on and the last tap-off δ t is less than 60 minutes, (2) the distance gap δd
is less than 500 m, and (3) the current tap-off is different to OriginLocation. Otherwise, we assign a new JourneyID and
set RID equals zero.

• Step 5: The journey reconstruction process for the passenger i is finished after the last transaction of the day, otherwise
we move to the next transaction.

5.3 Data processing

After journey reconstruction, the remaining data processing in preparation of the inputs for TPR is self-explanatory. Variables
tt, t f ,d,do and dd are directly calculated from each completed journeys. We then aggregate the completed journeys according
to their start time and their AlternativeID to produce passenger demand counts. The AlternativeID is an indicator of the route
choice. It has been defined in a way such that passengers from the same area who make similar choices will have the same
AlternativeID. Table 8 shows an example of the data used for the case study.

The AlternativeID, as shown in Table 8, has been coded in the format: [Origin ZoneID, Destination ZoneID, Mode, Route
of the first tap-on, Zone of the first tap-on, Zone of the first tap-off, Route of the last tap-on, Zone of the last tap-on, Zone of
the last tap-off]. The Count is total number of passengers who travelled within the same time period, and made the same travel
decision as shown in AlternativeID.
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Table 8 Examples of processed data for the case study

Time AlternativeID d do dd tt t f Count

2:45:00 205 1306 B.N60.205.1306 15947.24 327.688 16223.4 2379 0 20
2:45:00 1701 971 B.N90.1701.83 B.N80.96.971 13963.24 15291.12 10497.86 3660 240 1
2:45:00 2764 144 B.N10.2764.144 9810.014 9865.593 291.957 1104 0 10
2:45:00 1059 1306 B.N60.1059.1306 4439.947 19943.25 16223.4 720 0 3
2:45:00 105 1571 B.520.105.1571 11487.84 1140.505 11981.43 1370 0 6

17:00:00 247 301 B.428.247.301 2319.39 2582.726 4866.599 520 0 12
17:00:00 81 4579 B.616X.81.4579 19921.91 1559.606 20985.03 2298 0 19
17:00:00 242 183 B.428.242.140 B.333.107.183 3738.204 2334.387 1408.359 1740 300 1
17:00:00 305 321 B.428.305.321 1560.36 4570.752 4835.734 450 0 2
17:00:00 81 4568 B.616X.81.3903 B.617X.3903.4568 29567.6 1559.606 30539.1 3750 150 2
17:00:00 6414 6344 B.320.6414.6344 6342.787 111994.2 116865.5 1350 0 6

5.4 Case study modelling results

We use the five explanatory variables, as described in Section 5.1, as the time-invariant variables of the TPR model, as
described in Section 3. The dataset is randomly divided into the training dataset, which includes 90% of data points, and
the testing dataset, which includes the remaining 10%. We develop TPR models with 3, 4, 5 harmonics and 5 time-invariant
variables. Thus the models are named H3V5, H4V5 and H5V5, similar to Section 4.2. We then compare them using Root
Mean Square Error (RMSE) as the criteria, which can be calculated as follows:

RMSE =

√
1
D

D

∑
i=1

(ci− c̄i)2 (26)

Where ci and c̄i are the actual and estimated count, respectively. D is the total number of data points in the testing dataset.
Thus RMSE measures the mean error of our prediction compares to the observed value. The models are trained using the
training dataset, and then tested using the testing dataset.

Table 9 Estimation errors with different TPR models

Model RMSE

H3V5 7.29
H4V5 6.84
H5V5 6.67

H5V5 shows better performance than H3V5 and H4V5. Table 10 shows the estimated parameters of H5V5. Most of the
parameters are significant.

The values and especially the signs of the explanatory variables do,dd ,d, tt and t f provide insights into the bus passenger
demand in NSW, Australia. The positive sign of do and d show that the further passengers are from the Sydney CBD and the
longer travel distance, the more likely that a journey by bus will be made. Similarly, the negative sign of dd shows that if the
journey ends near the CBD, the less likely that a journey by bus will be made. This is because the Sydney CBD is well serviced
by other public transport modes such as train, light rail and ferry, so bus travels are more for further areas. The negative signs
of travel time tt and transfer time t f show that passengers care about these factors. If transit providers can provide services
with shorter travel time and transfer time, the patronage for bus will be increased. Passengers concern most about distance
of travel and transfer time, which is showed by the fact that the estimated coefficients d and t f are significantly larger than
others.
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Table 10 Estimated parameters for H5V5. Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Coefficients Estimate Std. Error z value Pr(> |z|)
α0 1.6030 0.0038 418.9300 <2e-16 ***
β1 -0.2198 0.0059 -37.3720 <2e-16 ***
γ1 -0.0262 0.0038 -6.9340 <2e-16 ***
β2 -0.1925 0.0027 -72.6250 <2e-16 ***
γ2 -0.0043 0.0054 -0.7850 0.4330
β3 0.1262 0.0025 50.9330 <2e-16 ***
γ3 0.1108 0.0049 22.7230 <2e-16 ***
β4 -0.0882 0.0027 -33.2090 <2e-16 ***
γ4 0.2382 0.0032 75.6170 <2e-16 ***
β5 -0.0938 0.0016 -57.8180 <2e-16 ***
γ5 0.0456 0.0015 30.2900 <2e-16 ***
do 0.0017 0.0001 24.0960 <2e-16 ***
dd -0.0015 0.0001 -22.2250 <2e-16 ***
d 0.0365 0.0001 281.0640 <2e-16 ***
tt -0.0071 0.0000 -147.7890 <2e-16 ***
t f -0.0226 0.0001 -194.6990 <2e-16 ***

6 Discussion and conclusion

The inference of expected number of passengers arrivals at transit stops are essentially important for transit tactical planning
and operation control studies. We propose a non-homogeneous Poisson Process (NHPP) framework to model the exact records
of passenger arrival times. Simulation and calibration for this model are discussed. To estimate the aggregated count of
passengers arriving at transit stops, this chapter proposes a time-varying Poisson Regression (TPR) model, given the time and
over explanatory variables. This model uses aggregated counts of passenger demand within a time period and several other
variables to estimate the passenger counts. The numerical experiments using synthetic simulated data show the calibration
process for parameters of both NHPP and TPR.

We also use domain knowledge to implement the TPR model on a case study using observed Smart Card data in New
South Wales, Australia. The Transportation domain knowledge is used to define the important explanatory variables for the
TPR model, and to process the data. The variables travel time, transfer time, and distance are the most important to explain
the bus passenger demand. Domain knowledge has also been used to obtain great insights into the factors that impact the
patronage level of buses in NSW, Australia. By analysing the values and signs of variables do,dd ,d, tt and t f , we have found
that passengers are more likely to use bus when the journey is long, and starts further from the Sydney CBD. They are less
likely to use bus if the travel time or transfer time are large; and if the journey is also provided by other modes of transport
such as train, light rail or ferry.

The proposed analytical models are useful as a part of a transit tactical planning and operational control framework to
estimate the passenger demand at transit stops. Future work includes the use of observed data, a more involved formulation
for NHPP model and possibly an inclusion of the autoregressive term for the TPR model.
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